Citation: GU Jia-Fang, CHEN Wen-Kai. Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1810-1820. doi: 10.3866/PKU.WHXB201408221 shu

Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface

  • Received Date: 13 May 2014
    Available Online: 22 August 2014

    Fund Project:

  • Uranyl ion adsorption on the hydroxylated α- quartz (101) surface was investigated by firstprinciples density functional theory calculations. We explicitly considered the first hydration shell of the uranyl ion for short-range solvent effects and used the conductor-like screening model (COSMO) for longrange solvent effects. Both the adsorption energies and electronic structures of the adsorption system indicated that the bidentate hydrated uranyl species were more stable than bidentate hydroxylated species, and bidentate adsorption of the uranyl ion on the bridge site of dia-Os1Os2 was the most stable adsorption model in the aqueous state. The large differences in the electronic structures of the two forms were mainly because of the different degree of bonding between uranium and the surface after adsorption, which makes the 5f orbital narrow and causes a red shift. Use of halogen ions in the uranyl coordination environment can adjust the band gap of the uranyl adsorption system.

  • 加载中
    1. [1]

      (1) Sandhu, S. S.; Kohli, K. B.; Brar, A. S. Inorg. Chem. 1984, 23, 3609. doi: 10.1021/ic00190a036

    2. [2]

      (2) Nieweg, J. A.; Lemma, K.; Trewyn, B. G.; Lin, V. S. Y.; Bakac, A. Inorg. Chem. 2005, 44, 5641. doi: 10.1021/ic050130e

    3. [3]

      (3) Wheeler, J.; Thomas, J. K. J. Phys. Chem. 1984, 88, 750. (4) Krishna, V.; Kamble, V. S.; Gupta, N. M.; Selvam, P. J. Phys. Chem. C 2008, 112, 15832. doi: 10.1021/jp802779e

    4. [4]

      (5) Stewart, B. D.; Mayes, M. A.; Fendorf, S. Environ. Sci. Technol. 2010, 44, 928. doi: 10.1021/es902194x

    5. [5]

      (6) Tang, Y.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4446. doi: 10.1021/es802369m

    6. [6]

      (7) Tang, Y.; McDonald, J.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4452. doi: 10.1021/es802370d

    7. [7]

      (8) Zhang, H. X.; Xie, Y. X.; Tao, Z. Y. Colloids. Surf. A 2005, 252, 1. doi: 10.1016/j.colsurfa.2004.10.005

    8. [8]

      (9) Singer, D. M.; Maher, K.; Brown, G. E., Jr. Geochim. Cosmochim. Acta 2009, 73, 5989. doi: 10.1016/j.gca.2009.07.002

    9. [9]

      (10) Greathouse, J. A.; Cygan, R. T. Environ. Sci. Technol. 2006, 40, 3865. doi: 10.1021/es052522q

    10. [10]

      (11) Froideval, A.; Del Nero, M.; Gaillard, C.; Barillon, R.; Rossini, I.; Hazemann, J. L. Geochim. Cosmochim. Ac. 2006, 70, 5270. doi: 10.1016/j.gca.2006.08.027

    11. [11]

      (12) Sylwester, E. R.; Hudson, E. A.; Allen, P. G. Geochim. Cosmochim. Ac. 2000, 64, 2431. doi: 10.1016/S0016-7037(00)00376-8

    12. [12]

      (13) Lefèvre, G.; Noinville, S.; Fédoroff, M. J. Colloid. Interf. Sci. 2006, 296, 608. doi: 10.1016/j.jcis.2005.09.016

    13. [13]

      (14) Chanda, M.; Rempel, G. L. React. Polym. 1989, 11, 71. doi: 10.1016/0923-1137(89)90084-5

    14. [14]

      (15) Comarmond, M. J.; Payne, T. E.; Harrison, J. J.; Thiruvoth, S.; Wong, H. K.; Aughterson, R. D.; Lumpkin, G. R.; Müller, K.; Foerstendorf, H. Environ. Sci. Technol. 2011, 45, 5536. doi: 10.1021/es201046x

    15. [15]

      (16) Drisko, G. L.; Chee Kimling, M.; Scales, N.; Ide, A.; Sizgek, E.; Caruso, R. A.; Luca, V. Langmuir 2010, 26, 17581. doi: 10.1021/la103177h

    16. [16]

      (17) Vandenborre, J.; Drot, R.; Simoni, E. Inorg. Chem. 2007, 46, 1291. doi: 10.1021/ic061783d

    17. [17]

      (18) Dossot, M.; Cremel, S.; Vandenborre, J.; Grausem, J.; Humbert, B.; Drot, R.; Simoni, E. Langmuir 2005, 22, 140. (19) Ordoñez-Regil, E.; Drot, R.; Simoni, E.; Ehrhardt, J. J. Langmuir 2002, 18, 7977. doi: 10.1021/la025674x

    18. [18]

      (20) Kremleva, A.; Krüger, S.; Rösch, N. Geochim. Cosmochim. Ac. 2011, 75, 706. doi: 10.1016/j.gca.2010.10.019

    19. [19]

      (21) Martorell, B.; Kremleva, A.; Krüger, S.; Rösch, N. J. Phys. Chem. C 2010, 114, 13287. doi: 10.1021/jp101300w

    20. [20]

      (22) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j

    21. [21]

      (23) Payne, T. E.; Davis, J. A.; Lumpkin, G. R.; Chisari, R.;Waite, T. D. Appl. Clay. Sci. 2004, 26, 151. doi: 10.1016/j. clay.2003.08.013

    22. [22]

      (24) Glezakou, V. A.; deJong,W. A. J. Phys. Chem. A 2011, 115, 1257. (25) Moskaleva, L. V.; Nasluzov, V. A.; Rösch, N. Langmuir 2006, 22, 2141. doi: 10.1021/la052973o

    23. [23]

      (26) Perron, H.; Roques, J. R. m.; Domain, C.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2008, 47, 10991. doi: 10.1021/ic801246k

    24. [24]

      (27) Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2006, 45, 6568. doi: 10.1021/ic0603914

    25. [25]

      (28) Levesque, M.; Roques, J.; Domain, C.; Perron, H.; Veilly, E.; Simoni, E.; Catalette, H. Surf. Sci. 2008, 602, 3331. doi: 10.1016/j.susc.2008.09.006

    26. [26]

      (29) Greathouse, J. A.; O'Brien, R. J.; Bemis, G.; Pabalan, R. T. J. Phys. Chem. B 2002, 106, 1646. (30) Boily, J. F.; Rosso, K. M. Phys. Chem. Chem. Phys. 2011, 13, 7845. doi: 10.1039/c0cp01406k

    27. [27]

      (31) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. C 2011, 115, 5756. doi: 10.1021/jp1106636

    28. [28]

      (32) Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C. Surf. Sci. 2009, 603, 2502. doi: 10.1016/j.susc.2009.06.004

    29. [29]

      (33) Gu, J. F.; Lu, C. H.; Chen,W. K.; Xu, Y.; Zheng, J. D. Acta Phys. -Chim. Sin. 2009, 25, 655. [辜家芳, 陆春海, 陈文凯,许莹, 郑金德. 物理化学学报, 2009, 25, 655.] doi: 10.3866/PKU.WHXB20090419

    30. [30]

      (34) Gu, J. F.; Man, M. L.; Lu, C. H.; Chen,W. K. Chin. J. Inorg. Chem. 2012, 7, 1324. [辜家芳, 满梅玲, 陆春海, 陈文凯. 无机化学学报, 2012, 7, 1324.] (35) Gu, J. F.; Lu, C. H.; Chen,W. K.; Chen, Y.; Xu, K.; Huang, X.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 792. [辜家芳, 陆春海, 陈文凯, 陈勇, 许可, 黄昕, 章永凡. 物理化学学报, 2012, 28, 792.] doi: 10.3866/PKU.WHXB201201171

    31. [31]

      (36) Bargar, J. R.; Reitmeyer, R.; Lenhart, J. J.; Davis, J. A. Geochim. Cosmochim. Ac. 2000, 64, 2737. doi: 10.1016/S0016-7037(00)00398-7

    32. [32]

      (37) Delley, B. J. Chem. Phys. 1990, 92, 508. (38) Delley, B. J. Chem. Phys. 2000, 113, 7756. (39) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244

    33. [33]

      (40) Perdew, J. P.;Wang, Y. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800

    34. [34]

      (41) Sauer, J. Modeling of Structure and Reactivity in Zeolites; Academic Press: London, 1992. (42) Benedek, N. A.; Snook, I. K.; Latham, K.; Yarovsky, I. J. Chem. Phys. 2005, 122, 144102. (43) umans, T. P. M.;Wander, A.; Brown,W. A.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2007, 9, 2146. doi: 10.1039/b701176h

    35. [35]

      (44) Yang, J.;Wang, E. G. Phys. Rev. B 2006, 73, 035406. doi: 10.1103/PhysRevB.73.035406

    36. [36]

      (45) Yang, J.; Meng, S.; Xu, L.;Wang, E. G. Phys. Rev. B 2005, 71, 035413. doi: 10.1103/PhysRevB.71.035413

    37. [37]

      (46) Murashov, V. V.; Demchuk, E. J. Phys. Chem. B 2005, 109, 10835. (47) de Leeuw, N. H.; Higgins, F. M.; Parker, S. C. J. Phys. Chem. B 1999, 103, 1270. (48) Tsushima, S.; Suzuki, A. J. Mol. Struct. 1999, 487, 33. doi: 10.1016/S0166-1280(99)00137-2

    38. [38]

      (49) Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C. K.;Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103, 1831. (50) Reich, T.; Moll, H.; Arnold, T.; Denecke, M. A.; Hennig, C.; Geipel, G.; Bernhard, G.; Nitsche, H.; Allen, P. G.; Bucher, J. J.; Edelstein, N. M.; Shuh, D. K. J. Electron. Spectrosc. 1998, 96, 237. doi: 10.1016/S0368-2048(98)00242-4

    39. [39]

      (51) Michard, P.; Guibal, E.; Vincent, T.; Le Cloirec, P. Micro. Mater. 1996, 5, 309. doi: 10.1016/0927-6513(95)00067-4


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    18. [18]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(532)
  • Abstract views(940)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return