Citation: GU Jia-Fang, CHEN Wen-Kai. Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1810-1820. doi: 10.3866/PKU.WHXB201408221
-
Uranyl ion adsorption on the hydroxylated α- quartz (101) surface was investigated by firstprinciples density functional theory calculations. We explicitly considered the first hydration shell of the uranyl ion for short-range solvent effects and used the conductor-like screening model (COSMO) for longrange solvent effects. Both the adsorption energies and electronic structures of the adsorption system indicated that the bidentate hydrated uranyl species were more stable than bidentate hydroxylated species, and bidentate adsorption of the uranyl ion on the bridge site of dia-Os1Os2 was the most stable adsorption model in the aqueous state. The large differences in the electronic structures of the two forms were mainly because of the different degree of bonding between uranium and the surface after adsorption, which makes the 5f orbital narrow and causes a red shift. Use of halogen ions in the uranyl coordination environment can adjust the band gap of the uranyl adsorption system.
-
-
[1]
(1) Sandhu, S. S.; Kohli, K. B.; Brar, A. S. Inorg. Chem. 1984, 23, 3609. doi: 10.1021/ic00190a036
-
[2]
(2) Nieweg, J. A.; Lemma, K.; Trewyn, B. G.; Lin, V. S. Y.; Bakac, A. Inorg. Chem. 2005, 44, 5641. doi: 10.1021/ic050130e
-
[3]
(3) Wheeler, J.; Thomas, J. K. J. Phys. Chem. 1984, 88, 750. (4) Krishna, V.; Kamble, V. S.; Gupta, N. M.; Selvam, P. J. Phys. Chem. C 2008, 112, 15832. doi: 10.1021/jp802779e
-
[4]
(5) Stewart, B. D.; Mayes, M. A.; Fendorf, S. Environ. Sci. Technol. 2010, 44, 928. doi: 10.1021/es902194x
-
[5]
(6) Tang, Y.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4446. doi: 10.1021/es802369m
-
[6]
(7) Tang, Y.; McDonald, J.; Reeder, R. J. Environ. Sci. Technol. 2009, 43, 4452. doi: 10.1021/es802370d
-
[7]
(8) Zhang, H. X.; Xie, Y. X.; Tao, Z. Y. Colloids. Surf. A 2005, 252, 1. doi: 10.1016/j.colsurfa.2004.10.005
-
[8]
(9) Singer, D. M.; Maher, K.; Brown, G. E., Jr. Geochim. Cosmochim. Acta 2009, 73, 5989. doi: 10.1016/j.gca.2009.07.002
-
[9]
(10) Greathouse, J. A.; Cygan, R. T. Environ. Sci. Technol. 2006, 40, 3865. doi: 10.1021/es052522q
-
[10]
(11) Froideval, A.; Del Nero, M.; Gaillard, C.; Barillon, R.; Rossini, I.; Hazemann, J. L. Geochim. Cosmochim. Ac. 2006, 70, 5270. doi: 10.1016/j.gca.2006.08.027
-
[11]
(12) Sylwester, E. R.; Hudson, E. A.; Allen, P. G. Geochim. Cosmochim. Ac. 2000, 64, 2431. doi: 10.1016/S0016-7037(00)00376-8
-
[12]
(13) Lefèvre, G.; Noinville, S.; Fédoroff, M. J. Colloid. Interf. Sci. 2006, 296, 608. doi: 10.1016/j.jcis.2005.09.016
-
[13]
(14) Chanda, M.; Rempel, G. L. React. Polym. 1989, 11, 71. doi: 10.1016/0923-1137(89)90084-5
-
[14]
(15) Comarmond, M. J.; Payne, T. E.; Harrison, J. J.; Thiruvoth, S.; Wong, H. K.; Aughterson, R. D.; Lumpkin, G. R.; Müller, K.; Foerstendorf, H. Environ. Sci. Technol. 2011, 45, 5536. doi: 10.1021/es201046x
-
[15]
(16) Drisko, G. L.; Chee Kimling, M.; Scales, N.; Ide, A.; Sizgek, E.; Caruso, R. A.; Luca, V. Langmuir 2010, 26, 17581. doi: 10.1021/la103177h
-
[16]
(17) Vandenborre, J.; Drot, R.; Simoni, E. Inorg. Chem. 2007, 46, 1291. doi: 10.1021/ic061783d
-
[17]
(18) Dossot, M.; Cremel, S.; Vandenborre, J.; Grausem, J.; Humbert, B.; Drot, R.; Simoni, E. Langmuir 2005, 22, 140. (19) Ordoñez-Regil, E.; Drot, R.; Simoni, E.; Ehrhardt, J. J. Langmuir 2002, 18, 7977. doi: 10.1021/la025674x
-
[18]
(20) Kremleva, A.; Krüger, S.; Rösch, N. Geochim. Cosmochim. Ac. 2011, 75, 706. doi: 10.1016/j.gca.2010.10.019
-
[19]
(21) Martorell, B.; Kremleva, A.; Krüger, S.; Rösch, N. J. Phys. Chem. C 2010, 114, 13287. doi: 10.1021/jp101300w
-
[20]
(22) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j
-
[21]
(23) Payne, T. E.; Davis, J. A.; Lumpkin, G. R.; Chisari, R.;Waite, T. D. Appl. Clay. Sci. 2004, 26, 151. doi: 10.1016/j. clay.2003.08.013
-
[22]
(24) Glezakou, V. A.; deJong,W. A. J. Phys. Chem. A 2011, 115, 1257. (25) Moskaleva, L. V.; Nasluzov, V. A.; Rösch, N. Langmuir 2006, 22, 2141. doi: 10.1021/la052973o
-
[23]
(26) Perron, H.; Roques, J. R. m.; Domain, C.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2008, 47, 10991. doi: 10.1021/ic801246k
-
[24]
(27) Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Inorg. Chem. 2006, 45, 6568. doi: 10.1021/ic0603914
-
[25]
(28) Levesque, M.; Roques, J.; Domain, C.; Perron, H.; Veilly, E.; Simoni, E.; Catalette, H. Surf. Sci. 2008, 602, 3331. doi: 10.1016/j.susc.2008.09.006
-
[26]
(29) Greathouse, J. A.; O'Brien, R. J.; Bemis, G.; Pabalan, R. T. J. Phys. Chem. B 2002, 106, 1646. (30) Boily, J. F.; Rosso, K. M. Phys. Chem. Chem. Phys. 2011, 13, 7845. doi: 10.1039/c0cp01406k
-
[27]
(31) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. C 2011, 115, 5756. doi: 10.1021/jp1106636
-
[28]
(32) Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C. Surf. Sci. 2009, 603, 2502. doi: 10.1016/j.susc.2009.06.004
-
[29]
(33) Gu, J. F.; Lu, C. H.; Chen,W. K.; Xu, Y.; Zheng, J. D. Acta Phys. -Chim. Sin. 2009, 25, 655. [辜家芳, 陆春海, 陈文凯,许莹, 郑金德. 物理化学学报, 2009, 25, 655.] doi: 10.3866/PKU.WHXB20090419
-
[30]
(34) Gu, J. F.; Man, M. L.; Lu, C. H.; Chen,W. K. Chin. J. Inorg. Chem. 2012, 7, 1324. [辜家芳, 满梅玲, 陆春海, 陈文凯. 无机化学学报, 2012, 7, 1324.] (35) Gu, J. F.; Lu, C. H.; Chen,W. K.; Chen, Y.; Xu, K.; Huang, X.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2012, 28, 792. [辜家芳, 陆春海, 陈文凯, 陈勇, 许可, 黄昕, 章永凡. 物理化学学报, 2012, 28, 792.] doi: 10.3866/PKU.WHXB201201171
-
[31]
(36) Bargar, J. R.; Reitmeyer, R.; Lenhart, J. J.; Davis, J. A. Geochim. Cosmochim. Ac. 2000, 64, 2737. doi: 10.1016/S0016-7037(00)00398-7
-
[32]
(37) Delley, B. J. Chem. Phys. 1990, 92, 508. (38) Delley, B. J. Chem. Phys. 2000, 113, 7756. (39) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[33]
(40) Perdew, J. P.;Wang, Y. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800
-
[34]
(41) Sauer, J. Modeling of Structure and Reactivity in Zeolites; Academic Press: London, 1992. (42) Benedek, N. A.; Snook, I. K.; Latham, K.; Yarovsky, I. J. Chem. Phys. 2005, 122, 144102. (43) umans, T. P. M.;Wander, A.; Brown,W. A.; Catlow, C. R. A. Phys. Chem. Chem. Phys. 2007, 9, 2146. doi: 10.1039/b701176h
-
[35]
(44) Yang, J.;Wang, E. G. Phys. Rev. B 2006, 73, 035406. doi: 10.1103/PhysRevB.73.035406
-
[36]
(45) Yang, J.; Meng, S.; Xu, L.;Wang, E. G. Phys. Rev. B 2005, 71, 035413. doi: 10.1103/PhysRevB.71.035413
-
[37]
(46) Murashov, V. V.; Demchuk, E. J. Phys. Chem. B 2005, 109, 10835. (47) de Leeuw, N. H.; Higgins, F. M.; Parker, S. C. J. Phys. Chem. B 1999, 103, 1270. (48) Tsushima, S.; Suzuki, A. J. Mol. Struct. 1999, 487, 33. doi: 10.1016/S0166-1280(99)00137-2
-
[38]
(49) Spencer, S.; Gagliardi, L.; Handy, N. C.; Ioannou, A. G.; Skylaris, C. K.;Willetts, A.; Simper, A. M. J. Phys. Chem. A 1999, 103, 1831. (50) Reich, T.; Moll, H.; Arnold, T.; Denecke, M. A.; Hennig, C.; Geipel, G.; Bernhard, G.; Nitsche, H.; Allen, P. G.; Bucher, J. J.; Edelstein, N. M.; Shuh, D. K. J. Electron. Spectrosc. 1998, 96, 237. doi: 10.1016/S0368-2048(98)00242-4
-
[39]
(51) Michard, P.; Guibal, E.; Vincent, T.; Le Cloirec, P. Micro. Mater. 1996, 5, 309. doi: 10.1016/0927-6513(95)00067-4
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[6]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[7]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[8]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[9]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[10]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[11]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[12]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[13]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[14]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[15]
Liangyu Gong , Jie Wang , Fengyu Du , Lubin Xu , Chuanli Ma , Shihai Yan , Zhuwei Song , Fuheng Liu , Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023
-
[16]
Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026
-
[17]
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
-
[18]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[19]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[20]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[1]
Metrics
- PDF Downloads(532)
- Abstract views(768)
- HTML views(8)