Citation:
ZHU De-Hua, ZHONG Rong, CAO Yu, PENG Zhi-Hui, FENG Ai-Xin, XIANG Wei-Dong, ZHAO Jia-Long. Size-Dependent Electron Injection and Photoelectronic Properties of CuInS2 Quantum Dot Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(10): 1861-1866.
doi:
10.3866/PKU.WHXB201408044
-
Size-dependent electron injection processes in CuInS2 (CIS) quantum dot sensitized solar cells (QDSSCs) were studied. CuInS2 quantum dots (QDs) with various diameters were synthesized and sensitized on TiO2 films. The energy levels of the CuInS2 QDs were measured by cyclic voltammetry. The rates and efficiencies of electron transfer from CuInS2 QDs to TiO2 films were determined by time-resolved photoluminescence spectroscopy. It was found that the rate of electron injection increased with a decrease in QD size while the efficiency of electron injection decreased. Furthermore, the power conversion efficiency, the short-circuit photocurrent, and the fill factor (FF) of the QDSSCs increased with an increase in QD size. The enhanced performance of the QDSSCs was attributed to the increase in electron injection efficiency. These results indicate that the performance of the QDSSCs could be optimized by varying the size of the QDs.
-
-
-
[1]
(1) Huynh,W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. doi: 10.1126/science.1069156
-
[2]
(2) Nozik, A. J. Physica E 2002, 14, 115. doi: 10.1016/S1386-9477(02)00374-0
-
[3]
(3) Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601. doi: 10.1103/PhysRevLett.92.186601
-
[4]
(4) Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, 63. doi: 10.1126/science.1191462
-
[5]
(5) Kamat, P. V. Acc. Chem. Res. 2012, 45, 1906. (6) Liu, F.; Zhu, J.;Wei, J. F.; Li, Y.; Hu, L. H.; Dai, S. Y. Prog. Chem. 2013, 25, 409. [刘锋, 朱俊, 魏俊峰, 李毅, 胡林华, 戴松元. 化学进展, 2013, 25, 409.] (7) Wang, J.; Mora-Sero, I.; Pan, Z. X.; Zhao, K.; Zhang, H.; Feng, Y. Y.; Yang, G.; Zhong, X. H.; Bisquert, J. J. Am. Chem. Soc. 2013, 135, 15913. doi: 10.1021/ja4079804
-
[6]
(8) Pan, Z. X.; Zhao, K.;Wang, J.; Zhang, H.; Feng, Y. Y.; Zhong, X. H. ACS Nano 2013, 7, 5215. doi: 10.1021/nn400947e
-
[7]
(9) nzalez-Pedro, V.; Sima, C.; Marzari, G.; Boix, P. P.; Gimenez, S.; Shen, Q.; Dittrich, T.; Mora-Sero, I. Phys. Chem. Chem. Phys. 2013, 15, 13835. doi: 10.1039/c3cp51651b
-
[8]
(10) Zhong, H. Z.; Bai, Z. L.; Zou, B. S. J. Phys. Chem. Lett. 2013, 3, 3167. (11) Aldakov, D.; Lefrançois, A.; Reiss, P. J. Mater. Chem. C 2013, 1, 3756. doi: 10.1039/c3tc30273c
-
[9]
(12) Kolny-Olesiak, J.;Weller, H. ACS Appl. Mater. Interfaces 2013, 5, 12221. doi: 10.1021/am404084d
-
[10]
(13) Kuo, K. T.; Liu, D. M.; Chen, S. Y.; Lin, C. C. J. Mater. Chem. 2009, 19, 6780. doi: 10.1039/b907765k
-
[11]
(14) Li, T. L.; Lee, Y. L.; Teng, H. Energy Environ. Sci. 2012, 5, 5315. doi: 10.1039/c1ee02253a
-
[12]
(15) Santra, P. K.; Nair, P. V.; Thomas, K. G.; Kamat, P. V. J. Phys. Chem. Lett. 2013, 4, 722. doi: 10.1021/jz400181m
-
[13]
(16) Sun, M. Y.; Zhu, D. H.; Ji,W. Y.; Jing, P. T.;Wang, X. Y.; Xiang, W. D.; Zhao, J. L. ACS Appl. Mater. Interfaces 2013, 5, 12681. doi: 10.1021/am4040224
-
[14]
(17) Peng, Z. Y.; Liu, Y. L.; Shu,W.; Chen, K. Q.; Chen,W. Eur. J. Inorg. Chem. 2012, No. 32, 5239. (18) Zhong, H.; Lo, S. S.; Mirkovic, T.; Li, Y.; Ding, Y.; Li, Y.; Scholes, G. D. ACS Nano 2010, 4, 5253. doi: 10.1021/nn1015538
-
[15]
(19) Li, L.; Pandey, A.;Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176. doi: 10.1021/ja108261h
-
[16]
(20) Sun, J. H.; Zhu, D. H.; Ikezawa, M.;Wang, X. Y.; Zhao, J. L.; Masumoto, Y. Appl. Phys. Lett. 2014, 104, 023118. doi: 10.1063/1.4862274
-
[17]
(21) Robe, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. doi: 10.1021/ja056494n
-
[18]
(22) Tvrdya, K.; Frantsuzovc, P. A.; Kamat, P. V. Proc. Natl. Acad. Sci. 2011, 108, 29. doi: 10.1073/pnas.1011972107
-
[19]
(23) Guo, X. D.; Ma, B. B.;Wang, L. D.; Gao, R.; Dong, H. P.; Qiu, Y. Acta Phys. -Chim. Sin. 2013, 29, 1240. [郭旭东, 马蓓蓓, 王立铎, 高瑞, 董豪鹏, 邱勇. 物理化学学报, 2013, 29, 1240.] doi: 10.3866/PKU.WHXB201303261
-
[20]
(24) Shi, A. M.;Wang, X. Y.; Meng, X. D.; Liu, X. Y.; Li, H. B.; Zhao, J. L. J. Lumin. 2012, 132, 1819.
-
[1]
-
-
-
[1]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[2]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[3]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[4]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[5]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[6]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[7]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[8]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[9]
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
-
[10]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[11]
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
-
[12]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[13]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[14]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[15]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[16]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[17]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[18]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[19]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[20]
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
-
[1]
Metrics
- PDF Downloads(523)
- Abstract views(574)
- HTML views(23)