Citation: JIANG Chun-Xiang, HU Yu-Xiang, DONG Wen, ZHENG Fen-Gang, SU Xiao-Dong, FANG Liang, SHEN Ming-Rong. Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1867-1875. doi: 10.3866/PKU.WHXB201407221 shu

Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties

  • Received Date: 30 April 2014
    Available Online: 22 July 2014

    Fund Project:

  • Based on the cyclic voltammogram (CV) of TiO2/Ti electrodes in Cu2+ ion solution, we fabricated Cu2O and Cu particles onto TiO2 flat surfaces separately or simultaneously by adjusting the applied potentials during electrodeposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that Cu2O and Cu have different growth modes: Cu2O particles crystallize on the TiO2 surface separately while Cu particles nucleate on previously grown particles, forming a stacked particle structure. This growth behavior can be explained by the different electron transfer behavior on the Cu2O/TiO2 and Cu/TiO2 interfaces and this is determined by their bandgap alignments. Compared with a pure TiO2 photoanode, a significant enhancement of the photocurrent was observed for both the Cu2O/TiO2 and Cu/TiO2 heterostructures. A potential region exists where Cu2O and Cu grow on the TiO2 surface simultaneously and the corresponding photocurrent is relatively stable and reaches a maximum. UV-Vis diffuse reflectance spectroscopy, electrochemical impedance spectroscopy (EIS), and photocurrent vs potential characteristics revealed that the visible light absorption by Cu2O and Cu contributes significantly to the photocurrent. Cu/TiO2 resulted in greater broadband visible light utilization during the photoelectric conversion. Additionally, the increased zero-current potential and the effective charge separation as well as the rapid carrier transfer on the electrode/electrolyte interface are also related to the enhanced photoelectrochemical properties.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Bard, A. J.; Fox, M. A. Accounts Chem. Res. 1995, 28, 141. doi: 10.1021/ar00051a007

    3. [3]

      (3) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607

    4. [4]

      (4) Grimes, C. A.; Varghese, O. K.; Ranjan, S. Light, Water, Hydrogen; Springer: New York, 2007. (5) Ohtani, B. Chem. Lett. 2008, 37, 216. doi: 10.1246/cl.2008.216

    5. [5]

      (6) Wang,W. L.; Lin, H.; Zhang, L. Z.; Li, X.; Cui, B.; Li, J. B. Acta Phys. -Chim. Sin. 2010, 26, 1249. [汪文立, 林红, 张罗正, 李鑫, 崔柏, 李建保. 物理化学学报, 2010, 26, 1249.] doi: 10.3866/PKU.WHXB20100505

    6. [6]

      (7) Walter, M. G.;Warren, E. L.; McKone, J. R.; Boettcher, S.W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. (8) Lu, H. F.; Zhou, Y.; Xu, B. Q.; Chen, Y. F.; Liu, H. Z. Acta Phys. -Chim. Sin. 2008, 24, 459. [卢晗峰, 周瑛, 徐柏庆, 陈银飞, 刘化章. 物理化学学报, 2008, 24, 459.] doi: 10.3866/PKU.WHXB20080319

    7. [7]

      (9) Zhu, L.; Cui, X. L.; Shen, J.; Yang, X. L.; Zhang, Z. J. Acta Phys. -Chim. Sin. 2007, 23, 1662. [朱蕾, 崔晓莉, 沈杰, 杨锡良, 张壮健. 物理化学学报, 2007, 23, 1662.] doi: 10.1016/S1872-1508(07)60079-5

    8. [8]

      (10) Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. (11) Siripala,W.; Ivanovskaya, A.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W. Sol. Energy Mater. Sol. Cells 2003, 77, 229. doi: 10.1016/S0927-0248(02)00343-4

    9. [9]

      (12) Hou, Y.; Li, X. Y.; Zou, X. J.; Quan, X.; Chen, G. H. Environ. Sci. Technol. 2009, 43, 858. doi: 10.1021/es802420u

    10. [10]

      (13) Hou, Y.; Li, X. Y.; Zhao, Q. D.; Quan, X.; Chen, G. H. Appl. Phys. Lett. 2009, 95, 093108. doi: 10.1063/1.3224181

    11. [11]

      (14) Hu, C. C.; Nian, J. N.; Teng, H. Sol. Energy Mater. Sol. Cells 2008, 92, 1071. doi: 10.1016/j.solmat.2008.03.012

    12. [12]

      (15) Akimoto, K.; Ishizuka, S.; Yanagita, M.; Nawa, Y.; Paul, G. K.; Sakurai, T. Sol. Energy 2006, 80, 715. doi: 10.1016/j.solener.2005.10.012

    13. [13]

      (16) Herion, J.; Niekisch, E. A.; Scharl, G. Sol. Energy Mater. 1980, 4, 101. doi: 10.1016/0165-1633(80)90022-2

    14. [14]

      (17) Choudhary, S.; Upadhyay, S.; Kumar, P.; Singh, N.; Satsangi, V. R.; Shrivastav, R.; Dass, S. Int. J. Hydrog. Energy 2012, 37, 18713. (18) Tsui, L. K.; Zangari, G. Electrochim. Acta 2013, 100, 220. (19) Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. Energy Environ. Sci. 2013, 6, 1211. (20) Li, L.; Lei, J. G.; Ji, T. H. Mater. Res. Bull. 2011, 46, 2084. (21) Tsai, T. Y.; Chang, S. J.; Hsueh, T. J.; Hsueh, H. T.;Weng,W. Y.; Hsu, C. L.; Dai, B. T. Nanoscale Res. Lett. 2011, 6, 575. doi: 10.1186/1556-276X-6-575

    15. [15]

      (22) Tsui, L. K.; Zangari, G. Electrochim. Acta 2013, 100, 220. doi: 10.1016/j.electacta.2012.07.058

    16. [16]

      (23) Zhang, S. S.; Zhang, S. Q.; Peng, F.; Zhang, H. M.; Zhao, H. J. Electrochem. Commun. 2011, 13, 861. doi: 10.1016/j.elecom.2011.05.022

    17. [17]

      (24) Zhao, L.; Dong,W.; Zheng, F. G.; Fang, L.; Shen, M. R. Electrochim. Acta 2012, 80, 354. (25) Wijesundera, R. P. Semicond. Sci. Technol. 2010, 25, 045015. doi: 10.1088/0268-1242/25/4/045015

    18. [18]

      (26) Shao, F.; Sun, J.; Gao, L.; Luo, J. Q.; Liu, Y. Q.; Yang, S.W. Adv. Funct. Mater. 2012, 22, 3907. doi: 10.1002/adfm.v22.18

    19. [19]

      (27) Nachimuthu, P.; Thevuthasan, S.; Kim, Y. J.; Lea, A. S.; Shutthanandan, V.; Engelhard, M. H.; Baer, D. R.; Chambers, S. A.; Shuh, D. K.; Lindle, D.W.; Gullikson, E. M.; Perera, R. C. C. Chem. Mater. 2003, 15, 3939. (28) Wagner, C. D.; Riggs,W. M.; Davis, L. E.; Moulder, J. E.; Muilenber, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corporation Physical Electronics Division: Minnesota, USA, 1979. (29) Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51, 305. doi: 10.1016/S0927-0248(97)00233-X

    20. [20]

      (30) Takai, A.; Kamat, P. V. ACS Nano 2011, 5, 7369. doi: 10.1021/nn202294b

    21. [21]

      (31) Cao, D.;Wang, C.; Zheng, F.; Dong,W.; Fang, L.; Shen, M. Nano Lett. 2012, 12, 2803. (32) Wang, M. Y.; Sun L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. J. Energy Environ. Sci. 2013, 6, 1211. (33) Wijesundera, P. P.; Hidaka, M.; Koga, K.; Sakai, M.; Siripala, W. Thin Solid Films 2006, 500, 241. doi: 10.1016/j.tsf.2005.11.023

    22. [22]

      (34) Assimos, J. A.; Trivich, D. J. Appl. Phys. 1973, 44, 1687. doi: 10.1063/1.1662432

    23. [23]

      (35) Briskman, R. N. Sol. Energy Mater. Sol. Cells 1992, 27, 361. doi: 10.1016/0927-0248(92)90097-9

    24. [24]

      (36) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49. doi: 10.1021/cr00033a003

    25. [25]

      (37) Woodhouse, M.; Herman, G. S.; Parkinson, B. A. Chem. Mater. 2005, 17, 4318. doi: 10.1021/cm050546q

    26. [26]

      (38) Leng,W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. J. Phys. Chem. B 2005, 109, 15008. doi: 10.1021/jp051821z

    27. [27]

      (39) Li, Q.; Shang, J. K. Environ. Sci. Technol. 2009, 43, 8923.


  • 加载中
    1. [1]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    4. [4]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

Metrics
  • PDF Downloads(572)
  • Abstract views(653)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return