Citation: YANG Chao, LIU Xiao-Qing, HUANG Bi-Chun, WU You-Ming. Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(10): 1895-1902. doi: 10.3866/PKU.WHXB201407162 shu

Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts

  • Received Date: 17 June 2014
    Available Online: 16 July 2014

    Fund Project:

  • A series of ZrO2/MWCNTs were prepared, using ZrO(NO3)2·2H2O as a precursor, by the surface modification of multiwalled carbon nanotubes (MWCNTs). Manganese oxides were supported on the ZrO2/ MWCNTs to prepare MnOx/ZrO2/MWCNTs catalysts. The effect of zirconium on the selective catalytic reduction (SCR) activity of the catalysts was investigated. Furthermore, the structural properties of the catalysts were comprehensively characterized by a suite of analytical methods. The results show that the addition of zirconium improved the SCR activity of the MnOx/MWCNTs significantly and the catalyst with 30% Zr loading was found to have the highest activity. X- ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and N2 adsorption-desorption results revealed that the modification of zirconium could enhance the dispersion of MnOx on the support as well as enhance the interaction between the metal oxides and the MWCNTs. Additionally, zirconium could also increase the specific surface area, the total pore volume, and the average pore size of the catalysts. Moreover, from the results of X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), and temperature-programmed desorption of NH3 (NH3- TPD), zirconium increased the atomic concentration of the chemisorbed oxygen on the catalysts surface and promoted the conversion of Mn3+ to Mn4+. Therefore, the surface-active sites increased and the redox ability of the catalysts improved. Additionally, the amount and strength of acid on catalyst surface increased. These factors are the main reason for the MnOx/ZrO2/MWCNTs catalysts having better low-temperature SCR activity.

  • 加载中
    1. [1]

      (1) Ministry of Environmental Protection of the People's Republic of China. 2012 Environment Statistical Yearbook. http://zls.mep. v.cn/hjtj/nb/2012tjnb/201312/t20131225_265552.htm (accessed May 27, 2014). (2) Tian, H. Z.; Liu, K. Y.; Hao, J. M.;Wang, Y.; Gao, J. J.; Qiu, P. P.; Zhu, C. Y. Environ. Sci. Technol. 2013, 47, 11350 doi: 10.1021/es402202d

    2. [2]

      (3) Xu, H. D.; Zhang, Q. L.; Qiu, C. T.; Lin, T.; ng, M. C.; Chen, Y. Q. Chem. Eng. Sci. 2012, 76, 120. doi: 10.1016/j.ces.2012.04.012

    3. [3]

      (4) Mou, X. L.; Zhang, B. S.; Li, Y.; Yao, L. D.;Wei, X. J.; Su, D. S.; Shen,W. J. Angew. Chem. Int. Edit. 2012, 51, 2989. doi: 10.1002/anie.201107113

    4. [4]

      (5) Chan, H. Z.; Li, J. H.; Yuan, J.; Chen, L.; Dai, Y.; Arandiyan, H.; Xu, J. Y.; Hao, J. M. Catal. Today 2013, 20, 139. (6) Ma, Z. X.; Yang, H. S.; Li, B.; Liu, F.; Zhang, X. B. Ind. Eng. Chem. Res. 2013, 52, 3708. (7) Qu, L.; Li, C. T.; Zeng, G. M.; Zhang, M. Y.; Fu, M. F.; Ma, J. F.; Zhan, F. M.; Luo, D. Q. Chem. Eng. J. 2014, 242, 76. doi: 10.1016/j.cej.2013.12.076

    5. [5]

      (8) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. ACS Catal. 2013, 3, 1518. doi: 10.1021/cs3007846

    6. [6]

      (9) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.;Wang, K. L.; Luo, H. C.; Ye, D. Q. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012

    7. [7]

      (10) Su, Y. X.; Fan, B. X.;Wang, L. S.; Liu, Y. F.; Huang, B. C.; Fu, M. L.; Chen, L. M.; Ye, D. Q. Catal. Today 2013, 20, 115. (11) Li, L.;Wang, L. S.; Pan, S.W.;Wei, Z. L.; Huang, B. C. Chin. J. Catal. 2013, 34, 1087. doi: 10.1016/S1872-2067(11)60520-2

    8. [8]

      (12) Pan, S.W.; Luo, H. C.; Li, L.;Wei, Z. L.; Huang, B. C. J. Mol. Catal. A 2013, 377, 154. doi: 10.1016/j.molcata.2013.05.009

    9. [9]

      (13) Han, B.; Li, J. M.; Li, C. Chinese Journal of Light Scattering 2002, 14, 82. [韩波, 李美俊, 李灿. 光散射学报, 2002, 14, 82.] (14) Liu, J. F.; Hang, J. Z.; Shi, Y. L; Zhu,W. D. Journal of Shanghai University (Natural Science) 2009, 15, 87. [刘建飞, 杭建忠, 施利毅, 朱惟德. 上海大学学报(自然科学版), 2009, 15, 87.] (15) Chang, H. Z.; Chen, X. Y.; Li, J. H.; Ma, L.;Wang, C. Z.; Liu, C. X.; Schwank, J.W.; Hao, J. M. Environ. Sci. Technol. 2013, 47, 5294. doi: 10.1021/es304732h

    10. [10]

      (16) Thirupathi, B.; Smirniotis, P.G. J. Catal.2012, 288, 74. (17) Luo, H. C.; Huang, B. C.; Fu, M. L.;Wu, J. L.; Ye, D. Q. Acta Phys. -Chim. Sin. 2012, 28, 2175. [罗红成, 黄碧纯, 付名利, 吴军良, 叶代启. 物理化学学报, 2012, 28, 2175.] doi: 10.3866/PKU.WHXB201207062

    11. [11]

      (18) Ettireddy, P. R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P. G. Appl. Catal. B 2007, 76, 123. (19) Wu, Z. B.; Jiang, B. Q.; Liu, Y.;Wang, H, Q.; Jin, R. B. Environ. Sci. Technol. 2007, 41, 5812. (20) Zhou, G. Y.; Zhong, B. C.;Wang,W. H.; Guan, X. J.; Huang, B. C.; Ye, D. Q.;Wu, H. J. Catal. Today 2011, 175, 157. doi: 10.1016/j.cattod.2011.06.004

    12. [12]

      (21) Yang, S. J.;Wang, C. Z.; Li, J. H.; Yan, N. Q.; Ma, L.; Chang, H. Z. Appl. Catal. B 2011, 110, 71. doi: 10.1016/j.apcatb.2011.08.027

    13. [13]

      (22) Liu, F. D.; He, H. Catal. Today 2010, 153, 70. doi: 10.1016/j.cattod.2010.02.043

    14. [14]

      (23) Guan, B.; Lin, Z.; Huang, Z. J. Phys. Chem. C 2011, 115, 12850. doi: 10.1021/jp112283g

    15. [15]

      (24) Shu, Y.; Sun, H.; Quan, X.; Chen, S. J. Phys. Chem. C 2012, 116, 25319. doi: 10.1021/jp307038q

    16. [16]

      (25) Vishwanathan, V.; Jun, K.W.; Kim, J.W.; Roh, H. S. Appl. Catal. A 2004, 276, 251. doi: 10.1016/j.apcata.2004.08.011

    17. [17]

      (26) Jin, R. B.; Liu. Y.;Wu, Z. B.;Wang, H. Q.; Gu, T. T. Catal. Today 2010, 153, 84. doi: 10.1016/j.cattod.2010.01.039

    18. [18]

      (27) Fang, C.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Li, H. R.; Ye, L. P.; Zhang, J. P. Catal. Sci. Technol. 2013, 3, 803. doi: 10.1039/c2cy20670f


  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(382)
  • Abstract views(537)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return