Citation: WANG Shuo-Jue, AO Yin-Yong, ZHOU Han-Yang, YUAN Li-Yong, PENG Jing, ZHAI Mao-Lin. Research Progress in Radiation Effects on Ionic Liquids[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1597-1604. doi: 10.3866/PKU.WHXB201406271 shu

Research Progress in Radiation Effects on Ionic Liquids

  • Received Date: 4 May 2014
    Available Online: 27 June 2014

    Fund Project:

  • Ionic liquids (ILs) are regarded as a new generation of green solvents in spent nuclear fuel reprocessing, because of their fascinating properties such as negligible vapor pressure, high thermal stability, and successful use in the extraction of metal ions. However, the full realization of their potential requires a comprehensive knowledge of radiation effects on ILs, as they would be exposed to high radiation dose during extraction of high-level radioactive nuclides. This review presents research on the radiation effects on ILs, including radiation effects on the structures and properties of ILs, pulse radiolysis and laser photolysis of ILs, identification of radiolytic products of ILs and their influence on the extraction of metal ions. Our vision for the further development of this field is also proposed.

  • 加载中
    1. [1]

      (1) Herrmann,W. A.; Bohm, V. P.W. J. Organomet. Chem. 1999, 572 (1), 141. doi: 10.1016/S0022-328X(98)00941-3

    2. [2]

      (2) Le Boulaire, V.; Gree, R. Chem. Commun. 2000, No. 22, 2195.(3) Xiao, Y.; Malhotra, S. V. Tetrahedron Lett. 2004, 45 (45), 8339. doi: 10.1016/j.tetlet.2004.09.070

    3. [3]

      (4) Boxwell, C. J.; Dyson, P. J.; Ellis, D. J.;Welton, T. J. Am. Chem. Soc. 2002, 124 (32), 9334. doi: 10.1021/ja026361r

    4. [4]

      (5) Song, C. E.; Oh, C. R.; Roh, E. J.; Choo, D. J. Chem. Commun. 2000, No. 18, 1743.(6) Wasserscheid, P.;Waffenschmidt, H. J. Mol. Catal. A-Chem. 2000, 164 (1-2), 61. doi: 10.1016/S1381-1169(00)00259-4

    5. [5]

      (7) Wang, P.;Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner,W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2005, 127 (18), 6850. doi: 10.1021/ja042232u

    6. [6]

      (8) Wang, R.; Okajima, T.; Kitamura, F.; Ohsaka, T. Electroanal. 2004, 16 (1-2), 66.(9) Jiang, T. F.; Gu, Y. L.; Liang, B.; Li, J. B.; Shi, Y. P.; Ou, Q. Y. Anal. Chim. Acta 2003, 479 (2), 249. doi: 10.1016/S0003-2670(02)01537-4

    7. [7]

      (10) Zhang,W. Z.; He, L. J.; Gu, Y. L.; Liu, X.; Jiang, S. X. Anal. Lett. 2003, 36 (4), 827. doi: 10.1081/AL-120018802

    8. [8]

      (11) He, L. J.; Zhang,W. Z.; Zhao, L.; Liu, X.; Jiang, S. X. J. Chromatogr. A 2003, 1007 (1-2), 39. doi: 10.1016/S0021-9673(03)00987-7

    9. [9]

      (12) Dai, S.; Ju, Y. H.; Barnes, C. E. J. Chem. Soc.-Dalton Trans. 1999, No. 8, 1201.(13) Sengupta, A.; Mohapatra, P. K.; Iqbal, M.; Huskens, J.; Verboom,W. Dalton Trans. 2012, 41 (23), 6970. doi: 10.1039/c2dt12364a

    10. [10]

      (14) Papaiconomou, N.; Genand-Pinaz, S.; Leveque, J. M.; Guittonneau, S. Dalton Trans. 2013, 42 (6), 1979. doi: 10.1039/c2dt32631k

    11. [11]

      (15) Stepinski, D. C.; Jensen, M. P.; Dzielawa, J. A.; Dietz, M. L. Green Chem. 2005, 7 (3), 151. doi: 10.1039/b414756a

    12. [12]

      (16) Luo, H. M.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C.; Holbrey, J. D.; Bridges, N. J.; Rogers, R. D. Anal. Chem. 2004, 76 (11), 3078. doi: 10.1021/ac049949k

    13. [13]

      (17) Visser, A. E.; Rogers, R. D. J. Solid State Chem. 2003, 171 (1-2), 109. doi: 10.1016/S0022-4596(02)00193-7

    14. [14]

      (18) Rao, C. J.; Venkatesan, K. A.; Tata, B. V. R.; Nagarajan, K.; Srinivasan, T. G.; Rao, P. R. V. Radiat. Phys. Chem. 2011, 80 (5), 643. doi: 10.1016/j.radphyschem.2011.01.012

    15. [15]

      (19) Bhatt, A. I.; May, I.; Volkovich, V. A.; Collison, D.; Helliwell, M.; Polovov, I. B.; Lewin, R. G. Inorg. Chem. 2005, 44 (14), 4934. doi: 10.1021/ic048199u

    16. [16]

      (20) Bhatt, A. I.; Duffy, N.W.; Collison, D.; May I.; Lewin, R. G. Inorg. Chem. 2006, 45 (4), 1677. doi: 10.1021/ic051750i

    17. [17]

      (21) Allen, D.; Baston, G.; Bradley, A. E.; rman, T.; Haile, A.; Hamblett, I.; Hatter, J. E.; Healey, M. J. F.; Hodgson, B.; Lewin, R.; Lovell, K. V.; Newton, B.; Pitner,W. R.; Rooney, D.W.; Sanders, D.; Seddon, K. R.; Sims, H. E.; Thied, R. C. Green Chem. 2002, 4 (2), 152. doi: 10.1039/b111042j

    18. [18]

      (22) Berthon, L.; Nikitenko, S. I.; Bisel, I.; Berthon, C.; Faucon, M.; Saucerotte, B.; Zorz, N.; Moisy, P. Dalton Trans. 2006, No. 21, 2526.(23) Bosse, E.; Berthon, L.; Zorz, N.; Monget, J.; Berthon, C.; Bisel, I.; Legand, S.; Moisy, P. Dalton Trans. 2008, No. 7, 924.(24) Le Rouzo, G.; Lamouroux, C.; Dauvois, V.; Dannoux, A.; Legand, S.; Durand, D.; Moisy, P.; Moutiers, G. Dalton Trans. 2009, No. 31, 6175.(25) Qi, M. Y.;Wu, G. Z.; Chen, S. M.; Liu, Y. D. Radiat. Res. 2007, 167 (5), 508. doi: 10.1667/RR0727.1

    19. [19]

      (26) Qi, M. Y.;Wu, G. Z.; Li, Q. M.; Luo, Y. S. Radiat. Phys. Chem. 2008, 77 (7), 877. doi: 10.1016/j.radphyschem.2007.12.007

    20. [20]

      (27) Huang,W.; Chen, S. M.; Liu, Y. S.; Fu, H. Y.;Wu, G. Z. Radiat. Phys. Chem. 2011, 80 (4), 573. doi: 10.1016/j.radphyschem.2010.12.012

    21. [21]

      (28) Huang,W.; Chen, S. M.; Fu, H. Y.;Wu, G. Z. Radiat. Res. 2010, 174 (5), 650. doi: 10.1667/RR2170.1

    22. [22]

      (29) Huang, L.; Huang,W.; Fu, H. Y.;Wu, G. Z.; Guo, Z. J.;Wu,W. S.; Chen, S. M. Chin. Sci. Bull. 2013, 58 (10), 1150. doi: 10.1007/s11434-012-5656-3

    23. [23]

      (30) Gao, S. Y.; Dou, H.; Ding, L. S.; ng, P.; Luo, L.; Chen, D. Radiat. Prot. 2012, 32 (1), 21. [高思旖, 窦辉, 丁立生, 龚频, 罗亮, 陈达. 辐射防护, 2012, 32 (1), 21.] doi: 10.1088/0952-4746/32/1/N21

    24. [24]

      (31) Howett, S. E.; Joseph, J. M.; Noel, J. J.;Wren, J. C. J. Colloid Interface Sci. 2011, 361 (1), 338. doi: 10.1016/j.jcis.2011.05.034

    25. [25]

      (32) Cui, Z. P.;Wang, S. J.; Ao, Y. Y.; Peng, J.; Li, J. Q.; Zhai, M. L. Acta Phys. -Chim. Sin. 2013, 29 (3), 619. [崔振鹏, 王硕珏, 敖银勇, 彭静, 李久强, 翟茂林. 物化化学学报, 2013, 29 (3), 619.] doi: 10.3866/PKU.WHXB201212102

    26. [26]

      (33) Yuan, L. Y.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.;Wei, G. S. Radiat. Phys. Chem. 2009, 78 (12), 1133. doi: 10.1016/j.radphyschem.2009.07.003

    27. [27]

      (34) Yuan, L. Y.; Peng, J.; Li, J. Q.; Zhai, M. L. Acta Phys. -Chim. Sin. 2010, 26 (4), 981. [袁立永, 彭静, 李久强, 翟茂林. 物化化学学报, 2010, 26 (4), 981.] doi: 10.3866/PKU.WHXB20100423

    28. [28]

      (35) Paul, A.; Mandal, P. K.; Samanta, A. Chem. Phys. Lett. 2005, 402 (4-6), 375. doi: 10.1016/j.cplett.2004.12.060

    29. [29]

      (36) Paul, A.; Mandal, P. K.; Samanta, A. J. Phys. Chem. B 2005, 109 (18), 9148. doi: 10.1021/jp0503967

    30. [30]

      (37) Yuan, L. Y.; Peng, J.; Zhai, M. L.; Li, J. Q.;Wei, G. S. Radiat. Phys. Chem. 2009, 78 (7-8), 737. doi: 10.1016/j.radphyschem.2009.03.064

    31. [31]

      (38) Shkrob, I. A.; Marin, T.W.; Chemerisov, S. D.; Hatcher, J. L.; Wishart, J. F. J. Phys. Chem. B 2011, 115 (14), 3889. doi: 10.1021/jp200305b

    32. [32]

      (39) Tarabek, P.; Liu, S. Y.; Haygarth, K.; Bartels, D. M. Radiat. Phys. Chem. 2009, 78 (3), 168. doi: 10.1016/j.radphyschem.2008.11.006

    33. [33]

      (40) Dhiman, S. B.; ff, G. S.; Runde,W.; LaVerne, J. A. J. Phys. Chem. B 2013, 117 (22), 6782. doi: 10.1021/jp402502d

    34. [34]

      (41) Yuan, L. Y.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.;Wei, G. S. Dalton Trans. 2008, No. 45, 6358.(42) Yuan, L. Y.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.;Wei, G. S. J. Phys. Chem. B 2009, 113 (26), 8948. doi: 10.1021/jp9016079

    35. [35]

      (43) Yuan, L. Y.; Xu, C.; Peng, J.; Xu, L.; Zhai, M. L.; Li, J. Q.;Wei, G. S.; Shen, X. H. Dalton Trans. 2009, No. 38, 7873.(44) Sun, T. X.; Shen, X. H.; Chen, Q. D.; Ma, J. Y.; Zhang, S.; Huang, Y. Y. Radiat. Phys. Chem. 2013, 83, 74.(45) Ao, Y. Y.; Peng, J.; Yuan, L. Y.; Cui, Z. P.; Li, C.; Li, J. Q.; Zhai, M. L. Dalton Trans. 2013, 42 (12), 4299. doi: 10.1039/c2dt32418k

    36. [36]

      (46) Ao, Y. Y.; Zhou, H. Y.; Yuan,W. J.;Wang, S. J.; Peng, J.; Zhai, M. L.;Wang, J. Y.; Zhao, Z. Q.; Zhao, L.;Wei, Y. Z. Dalton Trans. 2014, 43 (14), 5580. doi: 10.1039/c3dt53297f

    37. [37]

      (47) Behar, D.; nzalez, C.; Neta, P. J. Phys. Chem. A 2001, 105 (32), 7607. doi: 10.1021/jp011405o

    38. [38]

      (48) Marcinek, A.; Zielonka, J.; Gebicki, J.; rdon, C. M.; Dunkin, I. R. J. Phys. Chem. A 2001, 105 (40), 9305. doi: 10.1021/jp0117718

    39. [39]

      (49) Wishart, J. F.; Neta, P. J. Phys. Chem. B 2003, 107 (30), 7261. doi: 10.1021/jp027792z

    40. [40]

      (50) Rogers, R. D.; Seddon, K. R.;Wishart, J. F. Ionic Liquids III A: Fundamentals, Progress, Challenges, and Opportunities ; American Chemical Society:Washington, DC, 2005; pp 102-116.(51) Shkrob, I. A.; Chemerisov, S. D.;Wishart, J. F. J. Phys. Chem. B 2007, 111 (40), 11786. doi: 10.1021/jp073619x

    41. [41]

      (52) Shkrob, I. A.; Marin, T.W.; Chemerisov, S. D.;Wishart, J. F. J. Phys. Chem. B 2011, 115 (14), 3872. doi: 10.1021/jp2003062

    42. [42]

      (53) Shkrob, I. A.; Marin, T.W.; Chemerisov, S. D.;Wishart, J. F. J. Phys. Chem. B 2011, 115 (37), 10927. doi: 10.1021/jp206579j

    43. [43]

      (54) Shkrob, I. A.; Marin, T.W.; Luo, H.; Dai, S. J. Phys. Chem. B 2013, 117 (46), 14372. doi: 10.1021/jp4082432

    44. [44]

      (55) Shkrob, I. A.; Marin, T.W.; Hatcher, J. L.; Cook, A. R.; Szreder, T.;Wishart, J. F. J. Phys. Chem. B 2013, 117 (46), 14385. doi: 10.1021/jp408242b

    45. [45]

      (56) Shkrob, I. A.; Marin, T.W.; Bell, J. R.; Luo, H.; Dai, S. J. Phys. Chem. B 2013, 117 (46), 14400. doi: 10.1021/jp408253y

    46. [46]

      (57) Shkrob, I. A.; Marin, T.W. J. Phys. Chem. B 2013, 117 (47), 14797. doi: 10.1021/jp408252n

    47. [47]

      (58) Zhu, G. L.;Wu, G. Z.; Long, D.W.; Sha, M. L.; Yao, S. Nucl. Sci. Tech. 2007, 18 (1), 16. doi: 10.1016/S1001-8042(07)60011-6

    48. [48]

      (59) Grodkowski, J.; Neta, P. J. Phys. Chem. A 2002, 106 (39), 9030. doi: 10.1021/jp020806g

    49. [49]

      (60) Grodkowski, J.; Neta, P.;Wishart, J. F. J. Phys. Chem. A 2003, 107 (46), 9794. doi: 10.1021/jp035265p

    50. [50]

      (61) Wishart, J. F.; Lall-Ramnarine, S. I.; Raju, R.; Scumpia, A.; Bellevue, S.; Ragbir, R.; Engel, R. Radiat. Phys. Chem. 2005, 72 (2-3), 99. doi: 10.1016/j.radphyschem.2004.09.005

    51. [51]

      (62) Asano, A.; Yang, J. F.; Kondoh, T.; Norizawa, K.; Nagaishi, R.; Takahashi, K.; Yoshida, Y. Radiat. Phys. Chem. 2008, 77 (10-12), 1244. doi: 10.1016/j.radphyschem.2008.05.032

    52. [52]

      (63) Takahashi, K.; Sato, T.; Katsumura, Y.; Yang, J. F.; Kondoh, T.; Yoshida, Y.; Katoh, R. Radiat. Phys. Chem. 2008, 77 (10-12), 1239. doi: 10.1016/j.radphyschem.2008.05.042

    53. [53]

      (64) Zhu, G. L.; Xu, J. J.;Wu, G. Z.; Zhu, H. P.; Long, D.W.; Chen, S.; Yao, S. D. Int. J. Mol. Sci. 2006, 7 (12), 590. doi: 10.3390/i7120590

    54. [54]

      (65) Fu, H. Y.; Xing, Z. G.;Wu, G. Z.; Yao, S. D. Res. Chem. Intermediat. 2011, 37 (1), 79. doi: 10.1007/s11164-010-0226-2

    55. [55]

      (66) Shkrob, I. A.; Marin, T.W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J. F. J. Phys. Chem. B 2012, 116 (30), 9043. doi: 10.1021/jp302151c

    56. [56]

      (67) Xu, C.; Yuan, L. Y.; Shen, X. H.; Zhai, M. L. Dalton Trans. 2010, 39 (16), 3897. doi: 10.1039/b925594j


  • 加载中
    1. [1]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    8. [8]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    12. [12]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    15. [15]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(775)
  • Abstract views(727)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return