Citation: LIU Meng, LI Guo-Bao, WANG Jia-Guo, LIAO Fu-Hui, LIN Jian-Hua. Low-Temperature Synthesis of Superconductor Ba1-xKxBiO3[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1611-1615. doi: 10.3866/PKU.WHXB201406201 shu

Low-Temperature Synthesis of Superconductor Ba1-xKxBiO3

  • Received Date: 8 April 2014
    Available Online: 20 June 2014

    Fund Project:

  • Ba1-xKxBiO3 (BKBO) was synthesized using a topotactic reaction, which involves a conventional solidstate synthesis of pure BaBiO3, using BaCO3 and Bi2O3 as the raw materials, and subsequent treatment of BaBiO3 in a KOH flux at low temperature. All samples were characterized using X-ray diffraction (XRD) and magnetic susceptibility measurements. The XRD patterns show that there is no apparent impurity in the obtained Ba1-xKxBiO3 samples, and all the diffraction data can be indexed using a pseudo-cubic cell. All the samples showed superconductivity, and the highest superconducting transition temperature (Tc) was 30.6 K. The influences of the reaction time and the ratio of the precursor to the molten salts on the transition temperature were investigated. The best reaction conditions were treatment at 450 ℃ for 4 h, with BaBiO3:KOH:KF mass ratio of 1:5:2.5.

  • 加载中
    1. [1]

      (1) Cava, R. J.; Batlogg, B.; Krajewski, J. J.; Farrow, R.; Rupp, L. W., Jr.; White, A. E.; Short, K.; Peck,W. F.; Kometani, T. Nature 1988, 332, 814. doi: 10.1038/332814a0

    2. [2]

      (2) Park, C.; Snyder, R. L. J. Am. Ceram. Soc. 1995, 78, 3171. doi: 10.1111/jace.1995.78.issue-12

    3. [3]

      (3) Shaikh, F. I.; Kalubarme, R. S.; Pawar, S. H. Applied Surface Science 2008, 254, 5772. doi: 10.1016/j.apsusc.2008.03.143

    4. [4]

      (4) Hinks, D. G.; Dabrowski, B.; Jorgensen, J. D.; Mitchell, A.W.; Richards, D. R.; Pei, S.; Shi, D. Nature 1988, 333, 836. doi: 10.1038/333836a0

    5. [5]

      (5) Kim, D. C.; Baranov, A. N.; Kim, J. S.; Kang, H. R.; Kim, B. J.; Kim, Y. C.; Pshirkov, J. S.; Antipov, E. V.; Park, Y.W. Journal of Superconductivity 2002, 15, 331. doi: 10.1023/A:1021009927768

    6. [6]

      (6) Kim, D. C.; Baranov, A. N.; Kim, J. S.; Kang, H. R.; Kim, B. J.; Kim, Y. C.; Pshirkov, J. S.; Antipov, E. V.; Park, Y.W. Physica C 2003, 383, 343. doi: 10.1016/S0921-4534(02)01332-1

    7. [7]

      (7) Shiryaey, S. V.; Barilo, S. N.; Ustinovich, S. N.; Fedotova, V. V.; Gatalskaya, V. I.; Szymczak, H.; Szymczak, R.; Baran, M. J. Cryst. Growth 2000, 211, 471. doi: 10.1016/S0022-0248(99)00766-6

    8. [8]

      (8) Zhang, G. H.; Li, G. B.; Huang, F. Q.; Liao, F. H.; Li, K.;Wang, Y. X.; Lin, J. H. J. Alloy. Compd. 2011, 509, 9804. doi: 10.1016/j.jallcom.2011.08.031

    9. [9]

      (9) Cui, Y. J.; Chen, Y. L.;Wang, F. S.; Li, J.; Zhang, Y.; Zhao, Y. Rare Metal Materials and Engineering 2009, 38, 583. doi: 10.1016/S1875-5372(10)60030-6

    10. [10]

      (10) Liu, S. F.; Fu,W. T. Mater. Res. Bull. 2001, 36, 1505. doi: 10.1016/S0025-5408(01)00609-2

    11. [11]

      (11) Chen, Y. L.; Cui, Y. J.; Yang, Y.; Zhang, Y.; Zhao, Y. Physica C 2011, 471, 704. doi: 10.1016/j.physc.2011.05.032

    12. [12]

      (12) Kohler, J. Angew. Chem. Int. Edit. 2001, 40, 2435.(13) Nagata, Y.; Mishiro, A.; Uchida, T.; Ohtsuka, M.; Samata, H. J. Phys. Chem. Solids 1999, 60, 1933. doi: 10.1016/S0022-3697(99)00217-6

    13. [13]

      (14) Sleight, A.W.; Gillson, J. L.; Bierstedt, P. E. Solid State Commun. 1975, 17, 27. doi: 10.1016/0038-1098(75)90327-0

    14. [14]

      (15) Wignacourt, J. P.; Swinnea, J. S.; Steinfink, H.; odenough, J. B. Appl. Phys. Lett. 1988, 53, 1753. doi: 10.1063/1.100430

    15. [15]

      (16) Cui, Y. J. Molten Salt Technique Preparation of Bismuthate Superconductors and Researches on the Doping Effect. Ph. D. Dissertation, Southwest Jiaotong University, Sichuan, 2009. [崔雅静. 铋酸盐超导体的熔盐制备技术以及掺杂效应的研究 [D]. 成都: 西南交通大学, 2009.](17) Guner, S. B.; rur, O.; Celik, S.; Dogruer, M.; Yildirim, G.; Varilci, A.; Terzioglu, C. J. Alloy. Compd. 2012, 540, 260. doi: 10.1016/j.jallcom.2012.06.082

    16. [16]

      (18) Sagsoz, M. E.; Ertugrul, M.; Cevik, U. Mater. Lett. 2006, 60, 1778. doi: 10.1016/j.matlet.2005.12.020

    17. [17]

      (19) Liu, X. Y.; Huang, Y.; Zeng, Z. M. Materials Science and Engineering Journal 2003, 21, 104. [刘心宇, 黄蛹, 曾中明. 材料科学与工程学报, 2003, 21, 104.](20) Cui, Y. J.; Chen, Y. L.; Zhang, Y.; Zhao, Y. Journal of Low Temperature Physics 2008, 30, 129. [崔雅静, 陈永亮, 张勇, 赵勇. 低温物理学报, 2008, 30, 129.](21) Hiramatsu, H.; Katase, T.; Kamiya, T.; Hirano, M.; Hosono, H. Appl. Phys. Lett. 2008, 93, 162504. doi: 10.1063/1.2996591

    18. [18]

      (22) Yang, C. X.; Ju, J.; Zhao, S. D.; Xu, H. Y.; Liu, M.; Liao, F. H.; Li, G. B.; Lin, J. H. Acta Phys. -Chim. Sin. 2013, 29, 2661. [杨承旭, 鞠晶, 赵世迪, 徐航宇, 刘孟, 廖复辉, 李国宝, 林建华. 物理化学学报, 2013, 29, 2661.] doi: 10.3866/PKU.WHXB201310151

    19. [19]

      (23) Zhang, K. L.; Sun, J. T.; Yuan, L. J. Inorganic Synthesis Chemistry;Wuhan University Press:Wuhan, 2004; pp 134-139. [张克立, 孙聚堂, 袁良杰. 无机合成化学. 武汉: 武汉大学出版社, 2004: 134-139.](24) Wang, H.;Wang, C. H.; Li, G. B.; Jin, T. N.; Liao, F. H.; Lin, J. H. Inorg. Chem. 2010, 49, 5262. doi: 10.1021/ic100361y

    20. [20]

      (25) Pei, S.; Jorgensen, J. D.; Dabrowki, B.; Hinks, D. G.; Richards, D. R.; Mitchel, A.W.; Newsam, J. M.; Sinha, S. K.; Vaknin, D.; Jacobson, A. J. Phys. Rev. B 1990, 41, 4126. doi: 10.1103/PhysRevB.41.4126


  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    5. [5]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    6. [6]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

Metrics
  • PDF Downloads(722)
  • Abstract views(784)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return