Citation: TIAN Hong, WANG Hui-Xiang, SHI Wei-Mei, XU Yao. Microwave-Assisted Solvothermal Synthesis of In-Si Co-Modified TiO2 Photocatalysts with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1543-1549. doi: 10.3866/PKU.WHXB201406161
-
In-Si co-modified TiO2 photocatalysts were synthesized via a microwave-assisted solvothermal method. The obtained materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 addesorption (BET), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UVVis diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalysts all exist in an anatase phase, despite the fact that the crystallinity slightly decreased upon modification of the TiO2 photocatalysts. Si-modification resulted in smaller nanoparticles and larger specific surface areas. In-modification led to the formation of In2O3 on the surface of TiO2, such that In cannot enter the TiO2 lattice, contributing to efficient charge transfer between the coupled semiconductors In2O3 and TiO2. Degradation of Rhodamine B (RhB) showed that In-Si co-modified TiO2 photocatalysts can exhibit high photocatalytic activity under both ultraviolet and visible light. The highest activity was obtained for In-Si co-modified TiO2 with an Si:In:Ti molar ratio of 0.03:0.02:1 (IST-2), with which RhB was completely degraded within 3 min under ultraviolet light and where 97% of RhB was degraded after 120 min under visible light. The improved photocatalytic activity of In- Si co-modified TiO2 may be ascribed to synergistic effects between large surface area, efficient electron transmission at the In2O3-TiO2 interface, and the dye sensation effect of RhB. Photodegradation for colorless phenol occurred at a much slower rate than that for RhB, and the phenol did not completely degrade within 700 min.
-
Keywords:
-
TiO2
, - In2O3,
- Photocatalysis,
- Modification,
- Doping
-
-
-
[1]
(1) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177 (1-3), 971. doi: 10.1016/j.jhazmat.2010.01.013
-
[2]
(2) Liu, X.; Fang, Z.; Zhang, X.; Zhang,W.;Wei, X.; Geng, B. Cryst. Growth Des. 2009, 9 (1), 197. doi: 10.1021/cg800213w
-
[3]
(3) Song, L.; Zhang, S.; Chen, B. Catal. Commun. 2009, 10 (12), 1565. doi: 10.1016/j.catcom.2009.03.022
-
[4]
(4) Yang, G.; Jiang, Z.; Shi, H.; Xiao, T.; Yan, Z. J. Mater. Chem. 2010, 20 (25), 5301. doi: 10.1039/c0jm00376j
-
[5]
(5) Zhao,W. R.; Zeng,W. J.; Xi, H. P.; Yu, X. X. Acta Phys. -Chim. Sin. 2014, 30 (4), 761. [赵伟荣, 曾婉昀, 奚海萍, 余纤纤. 物理化学学报, 2014, 30 (4), 761.] doi: 10.3866/PKU.WHXB201402132
-
[6]
(6) Liu, M.; Piao, L.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang,W. Chem. Commun. 2010, 46 (10), 1664. doi: 10.1039/b924172h
-
[7]
(7) Hidal , M. C.; Aguilar, M.; Maicu, M.; Navío, J. A.; Colón, G. Catal. Today. 2007, 129 (1-2), 50. doi: 10.1016/j.cattod.2007.06.053
-
[8]
(8) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38 (1), 253. doi: 10.1039/b800489g
-
[9]
(9) He, Z.; Xie, L.; Song, S.;Wang, C.; Tu, J.; Hong, F.; Liu, Q.; Chen, J.; Xu, X. J. Mol. Catal. A: Chem. 2010, 319 (1-2), 78. doi: 10.1016/j.molcata.2009.12.003
-
[10]
(10) Liu, M.; You,W.; Lei, Z.; Zhou, G.; Yang, J.;Wu, G.; Ma, G.; Luan, G.; Takata, T.; Hara, M.; Domen, K.; Li, C. Chem. Commun. 2004, 2192.
-
[11]
(11) Rodríguez- nzález, V.; Zanella, R.; del Angel, G.; Gómez, R. J. Mol. Catal. A: Chem. 2008, 281 (1-2), 93. doi: 10.1016/j.molcata.2007.07.009
-
[12]
(12) Yu, J.; Xiong, J.; Cheng, B.; Liu, S. Appl. Catal. B 2005, 60 (3-4), 211. doi: 10.1016/j.apcatb.2005.03.009
-
[13]
(13) Wang, E.; Yang,W.; Cao, Y. J. Phys. Chem. C 2009, 113 (49), 20912. doi: 10.1021/jp9041793
-
[14]
(14) Sasikala, R.; Shirole, A. R.; Sudarsan, V.; Jagannath; Sudakar, C.; Naik, R.; Rao, R. Appl. Catal. A 2010, 377 (1-2), 47. doi: 10.1016/j.apcata.2010.01.039
-
[15]
(15) Peng, X. S.; Meng, G.W.; Zhang, J.;Wang, X. F.;Wang, Y.W.; Wang, C. Z.; Zhang, L. D. J. Mater. Chem. 2002, 12 (5), 1602. doi: 10.1039/b111315a
-
[16]
(16) Kuo, C.; Lu, S.;Wei, T. J. Cryst. Growth 2005, 285 (3), 400. doi: 10.1016/j.jcrysgro.2005.08.028
-
[17]
(17) Motta, F. V.; Lima, R. C.; Marques, A. P. A.; Leite, E. R.; Varela, J. A.; Lon , E. Mater. Res. Bull. 2010, 45 (11), 1703. doi: 10.1016/j.materresbull.2010.06.056
-
[18]
(18) Shibata, H.; Ogura, T.; Mukai, T.; Ohkubo, T.; Sakai, H.; Abe, M. J. Am. Chem. Soc. 2005, 127 (47), 16396. doi: 10.1021/ja0552601
-
[19]
(19) Das, S. K.; Bhunia, M. K.; Bhaumik, A. Dalton Trans. 2010, 39 (18), 4382. doi: 10.1039/c000317d
-
[20]
(20) Wilson, G. J.;Will, G. D.; Frost, R. L. J. Mater. Chem. 2002, 12 (6), 1787. doi: 10.1039/b200053a
-
[21]
(21) Li, Z.; Hou, B.; Xu, Y.;Wu, D.; Sun, Y. H. J. Colloid Interface Sci. 2005, 288, 149. doi: 10.1016/j.jcis.2005.02.082
-
[22]
(22) Li, F.; Jiang, Y.; Xia, M.; Sun, M.; Xue, B.; Liu, D.; Zhang, X. J. Phys. Chem. C 2009, 113 (42), 18134. doi: 10.1021/jp902558z
-
[23]
(23) Yu, C.; Yu, J. C.; Zhou,W.; Yang, K. Catal. Lett. 2010, 140 (3-4), 172.
-
[24]
(24) Shi,W.; Chen, Q.; Xu, Y.;Wu, D.; Huo, C. J. Solid State Chem. 2011, 184, 1983. doi: 10.1016/j.jssc.2011.05.056
-
[25]
(25) Cong, Y.; Zhang, J.; Chen, F.; Anpo, M.; He, D. J. Phys. Chem. C 2007, 111 (28), 10618. doi: 10.1021/jp0727493
-
[26]
(26) Sun, Y.; Murphy, C.; Reyesgil, K.; Reyesgarcia, E.; Lilly, J. Int. J. Hydrog. Energy 2008, 33 (21), 5967. doi: 10.1016/j.ijhydene.2008.07.100
-
[27]
(27) Zhou,W.; Liu, H.;Wang, J.; Liu, D.; Du, G.; Cui, J. ACS Appl. Mat. Interfaces 2010, 2 (8), 2385. doi: 10.1021/am100394x
-
[28]
(28) Gao, B.; Ma, Y.; Cao, Y.; Yang,W.; Yao, J. J. Phys. Chem. B 2006, 110 (29), 14391. doi: 10.1021/jp0624606
-
[29]
(29) Chen, Y.; Zhou, X.; Zhao, X.; He, X.; Gu, X. Mater. Sci. Eng. B 2008, 151 (2), 179. doi: 10.1016/j.mseb.2008.05.019
-
[30]
(30) Xiang, Q.; Yu, J.;Wong, P. J. Colloid Interface Sci. 2011, 357, 163. doi: 10.1016/j.jcis.2011.01.093
-
[31]
(31) Chen, C.; Ma,W.; Zhao, J. Chem. Soc. Rev. 2010, 39 (11), 4206. doi: 10.1039/b921692h
-
[32]
(32) Wang, M.;Wang, X. Sol. Energy Mater. Sol. Cells 2007, 91 (19), 1782. doi: 10.1016/j.solmat.2007.06.006
-
[33]
(33) Xiong, Z.; Zhang, L. L.; Ma, J.; Zhao, X. S. Chem. Commun. 2010, 46 (33), 6099. doi: 10.1039/c0cc01259a
-
[1]
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[7]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[8]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[9]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[13]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[18]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[1]
Metrics
- PDF Downloads(438)
- Abstract views(620)
- HTML views(52)