Citation: HE You-Zhou, LIU Yun, LIU Peng, FENG Wen, YUAN Li-Hua. Self-Assembly of Vesicles from Oli aramide Based on Multiple Hydrogen Bonds[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1501-1508. doi: 10.3866/PKU.WHXB201406122 shu

Self-Assembly of Vesicles from Oli aramide Based on Multiple Hydrogen Bonds

  • Received Date: 17 April 2014
    Available Online: 12 June 2014

    Fund Project:

  • Six-hydrogen-bonded oli aramide heteroduplexes demonstrate extremely high sequencespecificity and tunable stability during their self-assembly. The self-assembly behavior of molecular oli aramide 1 arrayed in a DADDAD-DADDAD sequence and that in the presence of oli aramide 2 with an ADAADAADAADA sequence were examined using multiple techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Results from these experiments indicate that 1 can self-assemble to vesicles with uniform shapes in both tetrahydrofuran/methanol (V/V, 85/15) and acetone, the size of which increased with an increase in solution concentration. Upon addition of the corresponding complementary 2, the vesicles turned into solid balls. Fluorescence microscopy experiments revealed that the vesicles were able to encapsulate the fluorescence molecules (Rhodamine B). With further modification of molecular structures, these vesicles may hold potential for applications as drug carrier as well as in controlled-release technology.

  • 加载中
    1. [1]

      (1) Graff, A.; Sauer, M.; Gelder, P. V.; Meier,W. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5064. doi: 10.1073/pnas.062654499

    2. [2]

      (2) Stoenescu, R.; Meier,W. Chem. Commun. 2002, 3016.

    3. [3]

      (3) Wang, Y. Y.; Hua,W.; Liu, T. Q. Acta Phys. -Chim. Sin. 2011, 27, 1907. [王元有, 华伟, 刘天晴. 物理化学学报, 2011, 27, 1907.] doi: 10.3866/PKU.WHXB20110822

    4. [4]

      (4) Stanish, I.; Lowy, D. A.; Hung, C.W.; Singh, A. Adv. Mater. 2005, 17, 1194.

    5. [5]

      (5) Yan, Q.; Yuan, J. Y.; Cai, Z. N.; Xin, Y.; Kang, Y.; Yin, Y.W. J. Am. Chem. Soc. 2010, 132, 9268. doi: 10.1021/ja1027502

    6. [6]

      (6) Yan, Q.; Zhou, R.; Fu, C. K.; Zhang, H. J.; Yin, Y.W.; Yuan, J. Y. Angew. Chem., Int. Edit. 2011, 50, 4923. doi: 10.1002/anie.v50.21

    7. [7]

      (7) Discher, D. E.; Eisenberg, A. Science 2002, 297, 967. doi: 10.1126/science.1074972

    8. [8]

      (8) Jones, R. A. L. Nat. Mater. 2004, 3, 209. doi: 10.1038/nmat1109

    9. [9]

      (9) Duan, Q. P.; Cao, Y.; Li, Y.; Hu, X. Y.; Xiao, T. X.; Lin, C.; Pan, Y.;Wang, L. Y. J. Am. Chem. Soc. 2013, 135, 10542. doi: 10.1021/ja405014r

    10. [10]

      (10) Li, S.; Qiu, Y. Q.; Zhang, S. H.; Gao, Y. H. Acta Phys. -Chim. Sin. 2011, 27, 2167. [李爽, 邱玉琴, 张锁慧, 高云华. 物理化学学报, 2011, 27, 2167.] doi: 10.3866/PKU.WHXB20110833

    11. [11]

      (11) Menger, F. M.; Gabrielson, K. D. Angew. Chem. Int. Edit. 1995, 34, 2091.

    12. [12]

      (12) Moss, R. A.; Bizzi tti, G. O. J. Am. Chem. Soc. 1981, 103, 6512. doi: 10.1021/ja00411a049

    13. [13]

      (13) Zhao, G. X.; Huang, J. B. Acta Phys. -Chim. Sin. 1992, 8, 583. [赵国玺, 黄建滨. 物理化学学报, 1992, 8, 583.] doi: 10.3866/PKU.WHXB19920503

    14. [14]

      (14) Discher, B. M.;Won, Y. Y.; Ege, D. S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. doi: 10.1126/science.284.5417.1143

    15. [15]

      (15) Lee, M.; Lee, S. J.; Jiang, L. H. J. Am. Chem. Soc. 2004, 126, 12724. doi: 10.1021/ja045918v

    16. [16]

      (16) Guan, B.; Jiang, M.; Yang, X.; Liang, Q.; Chen, Y. Soft Matter 2008, 4, 1393. doi: 10.1039/b805312j

    17. [17]

      (17) Kim, K.; Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267. doi: 10.1039/b603088m

    18. [18]

      (18) Ravoo, B. J.; Darcy, R. Angew. Chem. Int. Edit. 2000, 39, 4324.

    19. [19]

      (19) Lim, C.W.; Crespo-Biel, O.; Stuart, M. C. A.; Reinhoudt, D. N.; Huskens, J.; Ravoo, B. J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 6986. doi: 10.1073/pnas.0611123104

    20. [20]

      (20) Zhang, K. D.; Zhou, T. Y.; Zhao, X.; Jiang, X. K.; Li, Z. T. Langmuir 2012, 28, 14839.

    21. [21]

      (21) Xu, Y. X.;Wang, G. T.; Zhao, X.; Jiang, X. K.; Li, Z. T. Langmuir 2009, 25, 2684. doi: 10.1021/la8034243

    22. [22]

      (22) Xu, Y. X.;Wang, G. T.; Zhao, X.; Jiang, X. K.; Li, Z. T. Soft Matter 2010, 6, 1246. doi: 10.1039/b917576h

    23. [23]

      (23) Du, P.;Wang, G. T.; Zhao, X.; Li, G. Y.; Jiang, X. K.; Li, Z. T. Tetrahedron Lett. 2010, 51, 188. doi: 10.1016/j.tetlet.2009.10.115

    24. [24]

      (24) ng, B. Accounts Chem. Res. 2012, 45, 2077. doi: 10.1021/ar300007k

    25. [25]

      (25) Li, M. F.; Yamato, K.; Ferguson, J. S.; ng, B. J. Am. Chem. Soc. 2006, 128, 12628. doi: 10.1021/ja064515n

    26. [26]

      (26) Li, M. F.; Yamato, K.; Ferguson, J. S.; Singarapu, K. K.; Szyperski, T.; ng, B. J. Am. Chem. Soc. 2008, 130, 491. doi: 10.1021/ja072567m

    27. [27]

      (27) Yuan, L. H.; Zhang, P. H.; Feng,W.; ng, B. Curr. Org. Chem. 2011, 15, 1250. doi: 10.2174/138527211795378236

    28. [28]

      (28) Yang, X.W.; Hua, F. J.; Yamato, K.; Ruckenstein, E.; ng, B.; Kim,W.; Ryu, C. Y. Angew. Chem. Int. Edit. 2004, 43, 6471.

    29. [29]

      (29) Yang, X.W.; ng, B. Angew. Chem. Int. Edit. 2005, 44, 1352.

    30. [30]

      (30) Cao, R. K.; Zhou, J. J.;Wang,W.; Feng,W.; Li, X. H.; Zhang, P. H.; Deng, P. C.; Yuan, L. H.; ng, B. Org. Lett. 2010, 12, 2958. doi: 10.1021/ol100953e

    31. [31]

      (31) Zhang, P. H.; Chu, H. Z.; Li, X. H.; Feng,W.; Deng, P. C.; Yuan, L. H.; ng, B. Org. Lett. 2011, 13, 54. doi: 10.1021/ol102522m

    32. [32]

      (32) Zeng, J. S.;Wang,W.; Deng, P. C.; Feng,W.; Zhou, J. J.; Yang, Y. Y.; Yuan, L. H.; Yamato, K.; ng, B. Org. Lett. 2011, 13, 3798. doi: 10.1021/ol201282d

    33. [33]

      (33) Pan, X. S.; Chen, C.; Peng, J.; Yang, Y. A.;Wang, Y. H.; Feng, W.; Deng, P. C.; Yuan, L. H. Chem. Commun. 2012, 48, 9510. doi: 10.1039/c2cc35004a

    34. [34]

      (34) Li, X. H.; Fang, Y. Y.; Deng, P. C.; Hu, J. C.; Li, T.; Feng,W.; Yuan, L. H. Org. Lett. 2011, 13, 4628. doi: 10.1021/ol2018455

    35. [35]

      (35) Li, X. H.; Jia, Y. M.; Ren, Y.;Wang, Y. J.; Hu, J. C.; Ma, T.; Feng,W.; Yuan, L. H. Org. Biomol. Chem. 2013, 11, 6975. doi: 10.1039/c3ob40998h

    36. [36]

      (36) Liu, Y.; He, Y. Z.; Yuan, L. H.; Feng,W. Acta Phys. -Chim. Sin. 2011, 27, 918. [刘云, 贺有周, 袁立华, 冯文. 物理化学学报, 2011, 27, 918.] doi: 10.3866/PKU.WHXB20110403

    37. [37]

      (37) Jin, Y. D.; Liu, Y.; Yang, Y. A.; Zhang, D.; Dan, G. P.; Du, J.; Yuan, L. H.; Feng,W. Chin. J. Org. Chem. 2011, 31, 1864. [金永东, 刘云, 杨永安, 张东, 但贵萍, 杜鹃, 袁立华, 冯文. 有机化学, 2011, 31, 1864.]

    38. [38]

      (38) Zeng, H. Q.; Miller, R. S.; Flowers, R. A.; ng, B. J. Am. Chem. Soc. 2000, 122, 2635. doi: 10.1021/ja9942742

    39. [39]

      (39) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L. J. Am. Chem. Soc. 2006, 128, 7390. doi: 10.1021/ja061810z


  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    3. [3]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(550)
  • Abstract views(610)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return