Citation: XIAO Xue-Chun, SHI Wei, NI Zhe-Ming. Selective Hydrogenation Mechanism of Cinnamaldehyde on Au(111) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1456-1464. doi: 10.3866/PKU.WHXB201406091 shu

Selective Hydrogenation Mechanism of Cinnamaldehyde on Au(111) Surface

  • Received Date: 24 March 2014
    Available Online: 9 June 2014

  • The adsorption behavior and selective hydrogenation reaction mechanisms (C=O addition, C=C addition, and 1,4-conjugate addition) of cinnamaldehyde on an Au(111) surface were investigated by density functional theory combined with a periodic slab model. The adsorption energies of various adsorption models were obtained to determine the preferred adsorption configuration. The calculated results indicate that the most stable adsorption configuration involved the C=O and C=C double bond adsorbed on the Au(111) surface, with an average adsorption energy of 140.0 kJ·mol-1. The transition states of each elementary reaction for all possible reaction mechanisms were also located. Comparison of the activation energy barriers revealed hydrocinnamaldehyde (HCAL) to be the most likely selective hydrogenation product of cinnamaldehyde on an Au(111) surface. In addition, the 1,4- conjugate addition mechanism, which generates 3-phenyl-1-propen-1-ol (ENOL) that readily tautomerizes to HCAL, required less activation energy than did the C=C direct addition mechanism. The dominant reaction pathway involved an O atom of cinnamaldehyde preferentially hydrogenating to generate a more stable allyl intermediate. Another H atom then added to a C atom directly connected to the phenyl ring of the allyl intermediate to yield ENOL. Finally, ENOL tautomerized to HCAL. Throughout the process, the generation of ENOL is the rate-determining step, for which the highest activation energy barrier was required.

  • 加载中
    1. [1]

      (1) Li, G. Fine Chemical Intermediates Used Manual; Chemical Industry Press: Beijing, 2009; pp 565-566. [黎钢. 精细化工常用中间体手册. 北京: 化学工业出版社, 2009: 565-566.]

    2. [2]

      (2) Castellans, A. M. C. F.; Hogeweg, J. M.; Van Nispen, S. P. J. M. Process for the Preparation of 3-Phenylpropanal. PCT Int. Appl. 5811588, 1998.

    3. [3]

      (3) Galletti, A. M. R.; Toniolo, L.; Antonetti, C.; Evangelisti, C.; Forte, C. Appl. Catal. A-Gen. 2012, 447, 49.

    4. [4]

      (4) Bertolini, G. R.; Cabello, C. I.; Munoz, M.; Casella, M.; Gazzoli, D.; Pettiti, I.; Ferraris, G. J. Mol. Catal. A-Chem. 2013, 366, 109. doi: 10.1016/j.molcata.2012.09.013

    5. [5]

      (5) Nguyen, T. T.; Serp, P. ChemCatChem 2013, 5, 3595. doi: 10.1002/cctc.201300527

    6. [6]

      (6) Piqueras, C. M.; Gutierrez, V.; Vega, D. A.; Volpe, M. A. Appl. Catal. A-Gen. 2013, 467, 253. doi: 10.1016/j.apcata.2013.07.028

    7. [7]

      (7) Zhang, X.; Guo, Y. C.; Zhang, Z. C.; Gao, J. S.; Xu, C. M. J. Catal. 2012, 292, 213. doi: 10.1016/j.jcat.2012.05.017

    8. [8]

      (8) Gu, H. Z.; Xu, X. S.; Chen, A. A.; Ao, P.; Yan, X. H. Catal. Commun. 2013, 41, 65. doi: 10.1016/j.catcom.2013.07.015

    9. [9]

      (9) Manyar, H. G.; Yang, B.; Daly, H.; Moor, H.; McMonagle, S.; Tao, Y.; Yadav, G. D.; guet, A.; Hu, P.; Hardacre, C. ChemCatChem 2013, 5, 506. doi: 10.1002/cctc.201200447

    10. [10]

      (10) Ide, M. S.; Hao, B.; Neurock, M.; Davis, R. J. ACS Catal. 2012, 2, 671. doi: 10.1021/cs200567z

    11. [11]

      (11) Delbecq, F.; Sautet, P. J. Catal. 1995, 152, 217. doi: 10.1006/jcat.1995.1077

    12. [12]

      (12) Delbecq, F.; Sautet, P. J. Catal. 2002, 211, 398. doi: 10.1016/S0021-9517(02)93744-9

    13. [13]

      (13) Liu, B.W.; Gao, M.; Dang, L.; Zhao, H. T.; Marder, T. B.; Lin, Z. Y. Organometallics 2012, 31, 3410. doi: 10.1021/om3002153

    14. [14]

      (14) Tang, F.W.; Guo,W. M.; Tang, N. N.; Pei, J. Y.; Xu, X. Acta Phys. -Chim. Sin. 2013, 29, 2198. [唐法威, 郭为民, 唐楠楠,裴俊彦, 许旋. 物理化学学报, 2013, 29, 2198.] doi: 10.3866/PKU.WHXB201307294

    15. [15]

      (15) Ni, Z. M.; Xia, M. Y.; Shi,W.; Qian, P. P. Acta Phys. -Chim. Sin. 2013, 29, 1916. [倪哲明, 夏明玉, 施炜, 钱萍萍. 物理化学学报, 2013, 29, 1916.] doi: 10.3866/PKU.WHXB201307101

    16. [16]

      (16) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015

    17. [17]

      (17) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671

    18. [18]

      (18) Ge, Q.; Jenkins, S. J.; King, D. A. Chem. Phys. Lett. 2000, 327 (3-4), 125. doi: 10.1016/S0009-2614(00)00850-2

    19. [19]

      (19) Kittel, C. Introduction to Solid State Physics; Chemical Industry Press: Beijing, 2005; p 35; translated by Xiang, J. Z.,Wu, X. H. [Kittel, C. 固体物理导论. 项金钟, 吴兴惠, 译. 北京: 化学工业出版社, 2005: 35.]

    20. [20]

      (20) Liu, X. M.; Ni, Z. M.; Yao, P.; Xu, Q.; Mao, J. H.;Wang, Q. Q. Acta Phys. -Chim. Sin. 2010, 26, 1599. [刘晓明, 倪哲明,姚萍, 胥倩, 毛江洪, 王巧巧. 物理化学学报, 2010, 26, 1599.] doi: 10.3866/PKU.WHXB20100625

    21. [21]

      (21) Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.1063/1.458452

    22. [22]

      (22) Wang, J. J.; Lefebvre, I. J. Phys. Chem. C 2013, 117, 9887. doi: 10.1021/jp4013976

    23. [23]

      (23) Solis-Calero, C.; Ortega-Castro, J.; Hernandez-Laguna, A.; Munoz, F. J. Phys. Chem. C 2013, 117, 8299. doi: 10.1021/jp401488j

    24. [24]

      (24) Luo, Q. Q.;Wang, T.; Beller, M.; Jiao, H. J. J. Phys. Chem. C 2013, 117, 12715. doi: 10.1021/jp403972b

    25. [25]

      (25) Loffreda, D.; Delbecq, F.; Vigne, F.; Sautet, P. J. Am. Chem. Soc. 2006, 128, 1316. doi: 10.1021/ja056689v

    26. [26]

      (26) Capon, B.; Guo, B. Z.; Kwok, F. C.; Siddhanta, A. K.; Zucco, C. Accounts Chem. Res. 1988, 21, 135. doi: 10.1021/ar00148a001

    27. [27]

      (27) Cao, X. M.; Burch, R.; Hardacre, C.; Hu, P. J. Phys. Chem. C 2011, 115, 19819. doi: 10.1021/jp206520w

    28. [28]

      (28) Ala na, G.; Ghio, C.; Nagy, P. I. Phys. Chem. Chem. Phys. 2010, 12, 10173. doi: 10.1039/c003999c


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(538)
  • Abstract views(631)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return