Citation: LIANG Yan-Ni, WANG Fan. Theoretical Studies on Low-Lying States of AuX (X=O, S)[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1447-1455. doi: 10.3866/PKU.WHXB201405302
-
Multireference approaches have commonly been employed to calculate low-lying states of openshell molecules with spin-orbit coupling (SOC), such as for AuO and AuS. However, by choosing a proper reference state, the equation-of-motion coupled-cluster approach (EOM-CC) can also be used to calculate some low-lying states of these molecules. Furthermore, the EOM-CC approach is a single-reference method and, therefore, more easily employed than multireference approaches. In this work, low-lying states of AuO and AuS are investigated based on a recently developed EOM-CC approach for ionization potentials (EOMIP-CC) with SOC at the CCSD level, using the corresponding anions as reference. The contribution of triples with EOMIPCC is estimated by comparing results of EOMIP-CCSD and EOMIP-CCSDT at a scalar relativistic level. In addition, compared with the EOMIP-CCSDT results, errors by UCCSD(T) can reach 0.1-0.15 eV when spin contamination is significant and the norm of T1 is sizeable. When SOC is present, bond lengths and harmonic frequencies obtained with EOMIP-CCSD for the investigated states are in reasonable agreement with experimental data. Furthermore, ionization energies corresponding to the high-lying 2Δ3/2, 2Σ1/2+, and 2Π1/2 states are overestimated by EOMIP-SOC-CCSD, but results for the other low- lying states agree well with the experimental data, with an error of approximately 0.2 eV. These results indicate that the single-reference EOMIPCCSD method with SOC is able to provide a reasonable description of low-lying states of AuO and AuS.
-
-
[1]
(1) Pitzer, K. S. Accounts Chem. Res. 1979, 12, 272.
-
[2]
(2) Pyykko, P.; Desclaux, J. P. Accounts Chem. Res. 1979, 12, 276. doi: 10.1021/ar50140a002
-
[3]
(3) Pyykko, P. Chem. Rev. 1988, 88, 563. doi: 10.1021/cr00085a006
-
[4]
(4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789
-
[5]
(5) Griffiths, M. J.; Barrow, R. F. J. Chem. Soc., Faraday Trans. 1977, 73, 943. doi: 10.1039/f29777300943
-
[6]
(6) Citra, A.; Andrews, L. Theochem 1999, 489, 95. doi: 10.1016/S0166-1280(98)00516-8
-
[7]
(7) Sun, Q.; Jena, P.; Kim, Y. D.; Fischer, M.; Gantefor, G. J. Chem. Phys. 2004, 120, 6510. doi: 10.1063/1.1666009
-
[8]
(8) Ichino, T.; Gianola, A. J.; Andrews, D. H.; Lineberger,W. C. J. Phys. Chem. A 2004, 108, 11307. doi: 10.1021/jp045791w
-
[9]
(9) O'Brien, L. C.; Hardimon, S. C.; O'Brien, J. J. J. Phys. Chem. A 2004, 108, 11302. doi: 10.1021/jp045812m
-
[10]
(10) O′Brien, L. C.; Oberlink, A. E.; Roos, B. O. J. Phys. Chem. A 2006, 110, 11954. doi: 10.1021/jp063394a
-
[11]
(11) Okabayashi, T.; Koto, F.; Tsukamoto, K.; Yamazaki, E.; Tanimoto, M. Chem. Phys. Lett. 2005, 403, 223. doi: 10.1016/j.cplett.2005.01.003
-
[12]
(12) Zhai, H. J.; Bürgel, C.; Bonacic-Koutecky, V.;Wang, L. S. J. Am. Chem. Soc. 2008, 130, 9156. doi: 10.1021/ja802408b
-
[13]
(13) Legge, F. S.; Nyberg, G. L.; Peel, J. B. J. Phys. Chem. A 2001, 105, 790.
-
[14]
(14) Wu, Z. J. J. Phys. Chem. A 2005, 109, 5951. doi: 10.1021/jp0500283
-
[15]
(15) Yao, C.; Guan,W.; Song, P.; Su, Z. M.; Feng, J. D.; Yan, L. K.; Wu, Z. J. Theor. Chem. Acc. 2007, 117, 115.
-
[16]
(16) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[17]
(17) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
-
[18]
(18) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[19]
(19) Roos, B. O.; Malmqvist, P. Å. Phys. Chem. Chem. Phys. 2004, 6, 2919. doi: 10.1039/b401472n
-
[20]
(20) Li, Z.; Suo, B.; Zhang, Y.; Xiao, Y.; Liu,W. Mol. Phys. 2013, 111, 3741. doi: 10.1080/00268976.2013.785611
-
[21]
(21) Krylov, A. I. Annu. Rev. Phys. Chem. 2008, 59, 433. doi: 10.1146/annurev.physchem.59.032607.093602
-
[22]
(22) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 101, 8938. doi: 10.1063/1.468022
-
[23]
(23) Nooijen, M.; Bartlett, R. J. J. Chem. Phys. 1995, 102, 3629. doi: 10.1063/1.468592
-
[24]
(24) Tu, Z. Y.;Wang, F.; Li, X. Y. J. Chem. Phys. 2012, 136, 174102. doi: 10.1063/1.4704894
-
[25]
(25) Wang, F.; Gauss, J.; van Wüllen, C. J. Chem. Phys. 2008, 129, 064113. doi: 10.1063/1.2968136
-
[26]
(26) Kim, I.; Park, Y. C.; Kim, H.; Lee, Y. S. Chem. Phys. 2012, 395, 115. doi: 10.1016/j.chemphys.2011.05.002
-
[27]
(27) Cao, Z. L.;Wang, Z. F.; Yang, M. L.;Wang, F. Acta Phys. -Chim. Sin. 2014, 30 (3), 431. [曹战利, 王治钒, 杨明理, 王繁. 物理化学学报, 2014, 30 (3), 431.]. doi: 10.3866/PKU.WHXB201401023
-
[28]
(28) Liang, Y. N.;Wang, F.; Li, X. Y. Phys. Chem. Chem. Phys. 2013, 15, 17929. doi: 10.1039/c3cp52192c
-
[29]
(29) Stanton, J. F.; Gauss, J. J. Chem. Phys. 1999, 111, 8785. doi: 10.1063/1.479673
-
[30]
(30) Manohar, P. U.; Stanton, J. F.; Krylov, A. I. J. Chem. Phys. 2009, 131, 114112. doi: 10.1063/1.3231133
-
[31]
(31) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
-
[32]
(32) Wang, F.; Gauss, J. J. Chem. Phys. 2008, 129, 174110. doi: 10.1063/1.3000010
-
[33]
(33) Wang, F.; Gauss, J. J. Chem. Phys. 2009, 131, 164113. doi: 10.1063/1.3245954
-
[34]
(34) Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. doi: 10.1063/1.464746
-
[35]
(35) Dolg, M.; Cao, X. Chem. Rev. 2011, 112, 403.
-
[36]
(36) Schwerdtfeger, P. ChemPhysChem 2011, 12, 3143. doi: 10.1002/cphc.201100387
-
[37]
(37) Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chem. Phys. Lett. 2005, 311, 227.
-
[38]
(38) Weigend, F.; Baldes, A. J. Chem. Phys. 2010, 133, 174102. doi: 10.1063/1.3495681
-
[39]
(39) Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133, 134105. doi: 10.1063/1.3484283
-
[40]
(40) Stanton, J. F.; Gauss, J.; Harding, M. E.; Szalay, P. G.; Auer, A. A.; Bartlett, R. J.; Benedikt, U.; Berger, C.; Bernholdt, D. E.; Bomble, Y. J.; Cheng, L.; Christiansen, O.; Heckert, M.; Heun, O.; Huber, C.; Jagau, T. C.; Jonsson, D.; Jusélius, J.; Klein, K.; Lauderdale,W. J.; Matthews, D. A.; Metzroth, T.; Mück, L. A.; O’Neill, D. P.; Price, D. R.; Prochnow, E.; Puzzarini, C.; Ruud, K.; Schiffmann, F.; Schwalbach,W.; Stopkowicz, S.; Tajti, A.; Vázquez, J.;Wang, F.;Watts, J. D. and the integral packages MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), ABACUS (Helgaker, T.; Jensen, H. J. A.; Jørgensen, P.; Olsen, J.), and ECP routines by Mitin, A. V. and van Wüllen, C., CFOUR, Version 1.2; see http://www.cfour.de
-
[41]
(41) Liu,W. J.; van Wüllen, C. J. Chem. Phys. 1999, 110, 3730. doi: 10.1063/1.478237
-
[42]
(42) Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 411. doi: 10.1021/ja982234c
-
[1]
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[3]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[4]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[7]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[8]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[9]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[10]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[11]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[12]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[13]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[17]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[18]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[19]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[20]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[1]
Metrics
- PDF Downloads(488)
- Abstract views(417)
- HTML views(2)