Citation: DONG Wen-Da, ZHU He-Jun, DING Yun-Jie, PEI Yan-Peng, DU Hong, WANG Tao. Effect of Trace Amounts of Li Doping on Performance of Co/AC Catalysts for Syntheses of Mixed Linear α-Alcohols[J]. Acta Physico-Chimica Sinica, ;2014, 30(9): 1745-1751. doi: 10.3866/PKU.WHXB201405301 shu

Effect of Trace Amounts of Li Doping on Performance of Co/AC Catalysts for Syntheses of Mixed Linear α-Alcohols

  • Received Date: 31 March 2014
    Available Online: 30 May 2014

    Fund Project:

  • 15CoxLi/AC catalysts promoted by different trace amounts of Li doping were prepared by incipientwetness impregnation. The catalysts were investigated by means of CO hydrogenation and characterized by X-ray diffraction (XRD), temperature-programmed reduction (H2-TPR), and temperature-programmed surface reaction (TPSR) techniques. The results show that CO conversion, selectivity towards C5+ hydrocarbons, selectivity towards mixed linear α-alcohols and the distribution of higher alcohols (C6+OH) in the alcohol products were improved by adding trace amounts of Li to the 15Co/AC catalysts. XRD, H2-TPR, and TPSR results indicate that the existence of trace amounts of Li promotes weak interaction between Li and Co species, disperses the Co species of the catalysts, decreases the size of metallic Co particles, and promotes the formation of Co2C species.

  • 加载中
    1. [1]

      (1) Jiang, S. L.; Zhang,W. Hebei Chem. Technol. 1994, 2, 31. [姜淑兰, 张威. 河北化工, 1994, 2, 31.]

    2. [2]

      (2) Zhao, J. M. Chem. Tech. Market 2001, 8, 9. [赵建民. 化工科技市场, 2001, 8, 9.]

    3. [3]

      (3) Betts, M. J.; Dry, M. E.; Geertsema, A.; Rall, G. J. H. Process for Producing Oxygenated Products. US Pat. 6756411. 2004-1-29.

    4. [4]

      (4) Wang, F. Y.; Zhang, H.; Xin, Q.;Wu, S. H.; Huang,W. P.; Dai, L. Z.; Lu, D. X.; Peng, S. Y. Chin. J. Catal. 1994, 15, 79. [王峰云, 张慧, 辛勤, 吴世华, 黄维平, 戴丽珍, 陆大勋, 彭少逸. 催化学报, 1994, 15, 79.]

    5. [5]

      (5) Li, X. G.; Feng, L. J.; Liu, Z. Y.; Zhong, B.; Dadyburjor, D. B.; Kugler, E. L. Ind. Eng. Chem. Res. 1998, 37, 3853. doi: 10.1021/ie980136u

    6. [6]

      (6) Bian, G. Z.; Fu, Y. L.; Ma, Y. S. Catal. Today 1999, 51, 187. doi: 10.1016/S0920-5861(99)00021-8

    7. [7]

      (7) Zhang, Y.; Sun, Y. H.; Zhong, B. Catal. Lett. 2001, 76, 249. doi: 10.1023/A:1012292427168

    8. [8]

      (8) Sun, Z. H.; Fu, Y. L.; Bao, J. Chin. J. Mol. Catal. 2004, 18, 430. [孙中海, 伏义路, 鲍骏. 分子催化, 2004, 18, 430.]

    9. [9]

      (9) Zhang, H. B.; Dong, X.; Lin, G. D.; Liang, X. L.; Li, H. Y. Chem. Commun. 2005, 5094.

    10. [10]

      (10) Xiang, M. L.; Li, D. D.; Li,W. H.; Sun, Y. H . Catal. Commun. 2007, 8, 503. doi: 10.1016/j.catcom.2006.07.029

    11. [11]

      (11) Chen,W. M.; Ding, Y. J.; Song, X. G.; Zhu, H. J.; Yan, L.; Wang, T. Chin. J. Catal. 2012, 33, 1007. [陈维苗, 丁云杰, 宋宪根, 朱何俊, 严丽, 王涛. 催化学报, 2012, 33, 1007.]

    12. [12]

      (12) Xiao, K.; Bao, Z. H.; Qi, X. Z.;Wang, X. X.; Zhong, L. S.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Chin. J. Catal. 2013, 34, 116. [肖康, 鲍正洪, 齐行振, 王新星, 钟良枢, 房克功, 林明桂, 孙予罕. 催化学报, 2013, 34, 116.] doi: 10.1016/S1872-2067(11)60496-8

    13. [13]

      (13) Xu, H. Y.; Chu,W.; Deng, S. Y.; Shi, L. M.; Zhang, H.; Zhou, J. Acta Phys. -Chim. Sin. 2008, 24, 1085. [徐慧远, 储伟, 邓思玉, 士丽敏, 张辉, 周俊. 物理化学学报, 2008, 24, 1085.] doi: 10.3866/PKU.WHXB20080630

    14. [14]

      (14) Xu, H. Y.; Chu,W.; Deng, S. Y. Acta Phys. -Chim. Sin. 2010, 26, 345. [徐慧远, 储伟, 邓思玉. 物理化学学报, 2010, 26, 345.] doi: 10.3866/PKU.WHXB20100228

    15. [15]

      (15) Mao, D. S.; Guo, S. Q.; Yu, J.; Han, L. P.; Lu, G. Z. Acta Phys. -Chim. Sin. 2011, 27, 2639. [毛东森, 郭强胜, 俞俊, 韩璐蓬, 卢冠忠. 物理化学学报, 2011, 27, 2639.] doi: 10.3866/PKU.WHXB20111125

    16. [16]

      (16) Liu, J. G.; Ding, M. Y.;Wang, T. J.; Ma, L. L. Acta Phys. -Chim. Sin. 2012, 28, 1964. [刘建国, 定明月, 王铁军, 马隆龙. 物理化学学报, 2012, 28, 1964.] doi: 10.3866/PKU.WHXB201205213

    17. [17]

      (17) Liu, S. C.; Su, Y. L.; Chen, S. Y. Chin. J. Catal. 1999, 20, 445. [刘寿长, 苏运来, 陈诵英. 催化学报, 1999, 20, 445.]

    18. [18]

      (18) Ding, Y. J.; Zhu, H. J.;Wang, T.; Jiao, G. P.; Lu, Y. Activated Carbon Supported Cobalt Based Catalyst for Directly Converting of Synthesis Gas to Mixed Linear Alpha-Alcohols and Paraffins. US Pat. 7670985. 2007-8-9.

    19. [19]

      (19) Jiao, G. P.; Ding, Y. J.; Zhu, H. J.; Li, X. M.; Li, J.W.; Lin, R. H.; Dong,W. D.; ng, L. F.; Pei, Y. P.; Lu, Y. Appl. Catal. A: Gen. 2009, 364, 137. doi: 10.1016/j.apcata.2009.05.040

    20. [20]

      (20) Jiao, G. P.; Ding, Y. J.; Zhu, H. J.; Li, X. M.; Li, J.W.; Dong,W. D. Chin. J. Catal. 2009, 30, 825. [焦桂萍, 丁云杰, 朱何俊, 李显明, 李经伟, 董文达. 催化学报, 2009, 30, 825.]

    21. [21]

      (21) Subramani, V.; Gangwal, S. K. Energy & Fuels 2008, 22, 814. doi: 10.1021/ef700411x

    22. [22]

      (22) Ye, T. Q.; Zhang, Z. X.; Xu, Y.; Yan, S. Z.; Zhu, J. F.; Liu, Y.; Li, Q. X. Acta Phys. -Chim. Sin. 2011, 27, 1493. [叶同奇, 张朝霞, 徐勇, 颜世志, 朱九方, 刘勇, 李全新. 物理化学学报, 2011, 27, 1493.] doi: 10.3866/PKU.WHXB20110610

    23. [23]

      (23) Zhu, Q. F.; Zhang, R. J.; He, D. H. Acta Phys. -Chim. Sin. 2012, 28, 1461. [朱秋锋, 张荣俊, 贺德华. 物理化学学报, 2012, 28, 1461.] doi: 10.3866/PKU.WHXB201203302

    24. [24]

      (24) Pei, Y. P.; Ding, Y. J.; Zang, J.; Song, X. G.; Dong,W. D.; Zhu, H. J.;Wang, T.; Chen,W. M. Chin. J. Catal. 2012, 33, 808. [裴彦鹏, 丁云杰, 臧娟, 宋宪根, 董文达, 朱何俊, 王涛, 陈维苗. 催化学报, 2012, 33, 808.]

    25. [25]

      (25) Jiang, D. H.; Ding, Y. J.; Lü, Y.; Zhu, H. J.; Chen,W. M.;Wang, T.; Yan, L.; Luo, H, Y. Chin. J. Catal. 2009, 30, 697. [江大好, 丁云杰, 吕元, 朱何俊, 陈维苗, 王涛, 严丽, 罗洪原. 催化学报, 2009, 30, 697.]

    26. [26]

      (26) Jones, R. D.; Bartholomew, C. H. Appl. Catal. 1988, 39, 77. doi: 10.1016/S0166-9834(00)80940-9

    27. [27]

      (27) Xiong, H. F.; Motchelaho M. A. M.; Moyo, M.; Jewell, L. L.; Coville, N. J. Catal. Today 2013, 214, 50. doi: 10.1016/j.cattod.2012.10.018

    28. [28]

      (28) Lü, Z. P.; Tang, H. D.; Liu, C. L.; Liu, H. Z. Chin. J. Catal. 2011, 32, 1250. [吕兆坡, 唐浩东, 刘采来, 刘化章. 催化学报, 2011, 32, 1250.]

    29. [29]

      (29) Volkova, G. G.; Yuriva, T. M.; Plyasova, L. M; Naumova, M. I.; Zaikovskii, V. I. J. Mol. Catal. A: Chem. 2000, 158, 389. doi: 10.1016/S1381-1169(00)00110-2

    30. [30]

      (30) Lebarbier, V. M.; Mei, D. H.; Kim, D. H.; Andersen, A.; Male, J. L.; Holladay, J. E.; Rousseau, R.;Wang, Y. J. Phys. Chem. C 2011, 115, 17440. doi: 10.1021/jp204003q

    31. [31]

      (31) Qian,W. X.; Zhuang, X. J.; Zhang, H. T.; Ying,W. Y.; Fang, D. Y. Petrochem Technology 2011, 40, 358. [钱炜鑫, 庄绪军, 张海涛, 应卫勇, 房鼎业. 石油化工, 2011, 40, 358.]


  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(508)
  • Abstract views(734)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return