Citation: ZHU Jin-Xin, SHEN Mei-Qing, Lü Liang-Fang, WANG Jun, WANG Jian-Qiang. Effects of Two Different CeO2 Materials on Lean NOx Trap Performance below 300 ℃[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1559-1566. doi: 10.3866/PKU.WHXB201405283 shu

Effects of Two Different CeO2 Materials on Lean NOx Trap Performance below 300 ℃

  • Received Date: 8 April 2014
    Available Online: 28 May 2014

    Fund Project:

  • The present work investigated the effects of two types of CeO2 materials on the lean NOx trap (LNT) performance over NOx storage reduction (NSR) catalysts below 300 ℃. These materials were obtained by mechanical mixing of 2% (w) Pt/Al2O3 (PA) with CeO2-X (X=S, I). X-ray diffraction (XRD), BET surface area measurements, and scanning electron microscopy (SEM) were used to characterize the physical structures of the catalysts, while X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR) were employed to identify and quantify the surface Ce3+ concentrations and the amounts of surface-active oxygen. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) was applied to analyze the surface adsorbed NOx species. Compared with CeO2-I, CeO2-S presented superior physico-chemical properties, including higher surface area, richer porous texture, stronger aging-resistance, and higher surface Ce3+ concentration. As a result, the PA+CeO2-S sample also exhibited outstanding NOx trapping capacity. Furthermore, interaction between Pt and CeO2 was observed in the PA+CeO2-X mixtures, which facilitates NO oxidation and the NOx trapping process owing to the accompanying increase in the activity of surface active oxygen on the CeO2. This interaction was stronger in the case of the PA+CeO2-S sample as compared with the PA+CeO2-I. The Ce3+ content and presence of active oxygen species on the CeO2 surface both play critical roles in the NOx trapping process and hydrothermal treatment of the CeO2 significantly decreased the NOx trapping capacity of both PA+CeO2 samples. It was also determined that the interaction between Pt and aged CeO2 is weakened and that the NOx trapping capacity of aged CeO2 is enhanced after loading a small amount of Pt, which is attributed to the promotion of nitrate formation by increased surface oxygen activity.

  • 加载中
    1. [1]

      (1) Matsumoto, S. Catal. Today 1996, 29, 43. doi: 10.1016/0920-5861(95)00259-6

    2. [2]

      (2) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi, S.; Kasahara, K. Catal. Today 1996, 27, 63. doi: 10.1016/0920-5861(95)00173-5

    3. [3]

      (3) Casapu, M.; Grunwaldt, J.; Maciejewski, M.; Baiker, A.; Eckhoff, S.; bel, U.;Wittrock, M. J. Catal. 2007, 251, 28. doi: 10.1016/j.jcat.2007.07.019

    4. [4]

      (4) Buchel, R.; Strobel, R.; Krumeich, F.; Baiker, A.; Pratsinis, S. J. Catal. 2009, 261, 201. doi: 10.1016/j.jcat.2008.11.016

    5. [5]

      (5) Yang, M.; Li, Y. P.;Wang, J.; Shen, M. Q. J. Catal. 2010, 271, 228. doi: 10.1016/j.jcat.2010.01.018

    6. [6]

      (6) Zhang, Q. Q.; Lv, L. F.; Zhu, J. X.;Wang, X. Q.;Wang, J.; Shen, M. Q. Catal. Sci. Technol. 2013, 3, 1069. doi: 10.1039/c2cy20775c

    7. [7]

      (7) Xian, H.; Ma, A. J.; Meng, M.; Li, X. G. Acta Phys. -Chim. Sin. 2013, 29, 2437. [贤晖, 马爱静, 孟明, 李新刚. 物理化学学报, 2013, 29, 2437.] doi: 10.3866/PKU.WHXB201309052

    8. [8]

      (8) Wang, X. Q.; Lv, L. F.; Zhang, Q. Q.; Zhang, Y.W.;Wang, J.; Shen, M. Q. Catal. Sci. Technol. 2013, 3, 200. doi: 10.1039/c2cy20547e

    9. [9]

      (9) Xu, L. F.; Graham, G.; McCabe, R.; Hoard, J.; Yang, J. L. The Feacibility of an Alumina-Based Lean NOx Trap (LNT) for Diesel and HCCI Applications. SAE Technical Paper, 2008-01-0451, 2008.

    10. [10]

      (10) Ji, Y.; Toops, T. J.; Crocker, M. Catal. Lett. 2007, 119, 257. doi: 10.1007/s10562-007-9226-2

    11. [11]

      (11) Aneggi, E.; Boaro, M.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. J. Alloy. Compd. 2006, 408, 1096.

    12. [12]

      (12) Pang, X. J.; ng, M. C.;Wang, M.; Ren, Y. G.; Zhao, M.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2004, 20, 1155. [庞秀江,龚茂初, 王敏, 任屹罡, 赵明, 陈耀强. 物理化学学报, 2004, 20, 1155.] doi: 10.3866/PKU.WHXB20040919

    13. [13]

      (13) Ji, Y.; Toops, T. J.; Pihl, J. A.; Crocker, M. Appl. Catal. B: Environ. 2009, 91, 329. doi: 10.1016/j.apcatb.2009.06.002

    14. [14]

      (14) Ji, Y.; Fisk, C.; Easterling, V.; Graham, U.; Poole, A.; Crocker, M.; Choi, J. S.; Partridge,W.;Wilson, K. Catal. Today 2010, 151, 362. doi: 10.1016/j.cattod.2009.12.009

    15. [15]

      (15) Ren, Y. J.; Harold, M. P. ACS Catal. 2011, 1, 969.

    16. [16]

      (16) Ji, Y.; Choi, J. S.; Toops, T. J.; Crocker, M.; Naseri, M. Catal. Today 2008, 136, 146. doi: 10.1016/j.cattod.2007.11.059

    17. [17]

      (17) Easterling, V.; Ji, Y.; Crocker, M.; Ura, J.; Theis, J. R.; McCabe, R.W. Catal. Today 2010, 151, 338. doi: 10.1016/j.cattod.2009.12.007

    18. [18]

      (18) Corbos, E. C.; Elbouazzaoui, S.; Courtois, X.; Bion, N.; Marecot, P.; Duprez, D. Top. Catal. 2007, 42-43, 9.

    19. [19]

      (19) Roy, S.; Baiker, A. Chem. Rev. 2009, 109, 4054. doi: 10.1021/cr800496f

    20. [20]

      (20) Liu, H.; Henein, N.; Bryzik,W. Simulation of Diesel Engines Cold-Start. SAE Technical Paper, 2003-01-0080, 2003.

    21. [21]

      (21) Zhang, F.;Wang, P.; Koberstein, J. Surf. Sci. 2004, 563, 74. doi: 10.1016/j.susc.2004.05.138

    22. [22]

      (22) Azambre, B.; Zenboury, L.; Koch, A.;Weber, J. V. J. Phys. Chem. C 2009, 113, 13287.

    23. [23]

      (23) Philipp, S.; Drochner, A.; Kunert, J.; Vogel, H.; Theis, J.; Lox, E. S. Top. Catal. 2004, 30-31, 235.

    24. [24]

      (24) Yao, H. C.; Yao, Y. F. Y. J. Catal. 1984, 86, 254. doi: 10.1016/0021-9517(84)90371-3

    25. [25]

      (25) lunski, S. E.; Hatcher, H. A.; Rajaram, R. R.; Truex, T. J. Appl. Catal. B: Environ. 1995, 5, 367. doi: 10.1016/0926-3373(94)00057-3

    26. [26]

      (26) Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. J. Catal. 2006, 242, 103. doi: 10.1016/j.jcat.2006.06.002

    27. [27]

      (27) Atribak, I.; Azambre, B.; Bueno López, A.; García-García, A. Appl. Catal. B: Environ. 2009, 92, 126. doi: 10.1016/j.apcatb.2009.07.015

    28. [28]

      (28) Lv, L. F.;Wang, X. Q.; Shen, M. Q.; Zhang, Q. Q.;Wang, J. Chem. Eng. J. 2013, 222, 401. doi: 10.1016/j.cej.2013.02.084

    29. [29]

      (29) Hadjiivanov, K. I. Catal. Rev. Sci. Eng. 2000, 42, 71. doi: 10.1081/CR-100100260


  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    6. [6]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    7. [7]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    13. [13]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    14. [14]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    19. [19]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    20. [20]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

Metrics
  • PDF Downloads(513)
  • Abstract views(640)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return