Citation:
HAO Teng, WANG Jun, YU Tie, WANG Jian-Qiang, SHEN Mei-Qing. Effect of NO2 on the Selective Catalytic Reduction of NO with NH3 over Cu/SAPO-34 Molecular Sieve Catalyst[J]. Acta Physico-Chimica Sinica,
;2014, 30(8): 1567-1574.
doi:
10.3866/PKU.WHXB201405261
-
This study investigated the effects of NO2 on the selective catalytic reduction (SCR) of NO by NH3 over Cu/SAPO-34 catalyst at temperatures ranging from 100 to 500 ℃. The Cu/SAPO- 34 sample was hydrothermally treated at 750 ℃ for 4 h to obtain a de-greened sample and X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure of the catalyst. SCR activity test, kinetic analysis, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ-DRIFTS) were all applied to evaluate the changes in catalytic activity in the presence of various NO/NO2 ratios. The SCR results for different NO/NO2 molar ratios demonstrated that NO2 inhibited the NOx removal efficiency over the Cu/SAPO- 34 catalyst at low temperatures (100-280 ℃), but enhanced the efficiency at high temperatures (above 280 ℃). The amount of N2O was observed to increase with decreasing NO/NO2 ratios, owing to the decomposition of NH4NO3. The kinetic results showed that the fast SCR reaction exhibited a higher apparent activation energy (Ea=64.02 kJ·mol-1) than that of the standard SCR reaction (Ea=48.00 kJ·mol-1) over Cu/SAPO-34 catalyst. The results of in situ-DRIFTS showed that NO2 did not efficiently generate nitrate species on Cu2+ sites compared with NO, and that some nitrate species combined with NH4+ on Brønsted acid sites to generate NH4NO3. The inhibitory effect of NO2 at low temperatures is evidently caused by deposited NH4NO3 covering the active sites of Cu/SAPO-34 catalyst, while these NH4NO3 species can be reduced by NO or thermally decomposed as the temperature increases.
-
-
-
[1]
(1) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B: Environ. 1998, 18, 1. doi: 10.1016/S0926-3373(98)00040-X
-
[2]
(2) Qi, G. S.; Yang, R. T.; Chang, R. Appl. Catal. B: Environ. 2004, 51, 93. doi: 10.1016/j.apcatb.2004.01.023
-
[3]
(3) Liu, C. C.; Teng, H. Appl. Catal. B: Environ. 2005, 58, 69. doi: 10.1016/j.apcatb.2004.12.002
-
[4]
(4) Yan, J. Y.; Sachtler,W. M. H.; Kung, H. H. Catal. Today 1997, 33, 279. doi: 10.1016/S0920-5861(96)00100-9
-
[5]
(5) Sjövall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[6]
(6) Kwak, J. H.; Tonkyn, R. G.; Kim, D. H.; Szanyi, J.; Peden, C. H. F. J. Catal. 2010, 275, 187. doi: 10.1016/j.jcat.2010.07.031
-
[7]
(7) Fickel, D.W.; D′Addio, E.; Lauterbacha, J. A.; Lobo, R. F. Appl. Catal. B: Environ. 2011, 102, 441. doi: 10.1016/j.apcatb.2010.12.022
-
[8]
(8) Bull, I.; Xue,W. M.; Burk, P.; Boorse, S. R.; Jaglowski,W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Dettling, J. C. Caudle, M. T. Copper CHA Zeolite Catalysts. US Patent 7601662, 2009.
-
[9]
(9) Kwak, J. H.; Tran, D.; Burton, S. D.; Szanyi, J.; Lee, J. H.; Peden, C. H. F. J. Catal. 2012, 287, 203. doi: 10.1016/j.jcat.2011.12.025
-
[10]
(10) Schmieg, S. J.; Oh, S. H.; Kim, C. H. Catal. Today 2012, 184, 252. doi: 10.1016/j.cattod.2011.10.034
-
[11]
(11) Fickel, D.W.; Lobo, R. F. J. Phys. Chem. C 2010, 114, 1633.
-
[12]
(12) Korhonen, S. T.; Fickel, D.W.; Lobo, R. F.;Weckhuysen, B. M.; Beale, A. M. Chem. Commun. 2010, 47, 800.
-
[13]
(13) Xue, J. J.;Wang, X. Q.; Qi, G. S.;Wang, J.; Shen, M. Q.; Li,W. J. Catal. 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020
-
[14]
(14) Fan, S. K.; Xue, J. J.; Yu, T.; Fan, D. Q. Catal. Sci. Technol. 2013, 3, 2357. doi: 10.1039/c3cy00267e
-
[15]
(15) Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. Catal. Rev. -Sci. Eng. 2008, 50, 492. doi: 10.1080/01614940802480122
-
[16]
(16) Rahkamaa-Tolonen, K.; Maunula, T.; Lomma, M.; Huuhtanen, M.; Keiski, R. L. Catal. Today 2005, 100, 217. doi: 10.1016/j.cattod.2004.09.056
-
[17]
(17) Devadas, M.; Kröcher, O.; Elsener, M.;Wokaun, A.; Söger, N.; Pfeifer, M.; Demel, Y.; Mussmann, L. Appl. Catal. B: Environ. 2006, 67, 187. doi: 10.1016/j.apcatb.2006.04.015
-
[18]
(18) Grossale, A.; Nova, I.; Tronconi, E. Catal. Today 2008, 136, 18. doi: 10.1016/j.cattod.2007.10.117
-
[19]
(19) Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.;Weibel, M. J. Catal. 2008, 256, 312. doi: 10.1016/j.jcat.2008.03.027
-
[20]
(20) Grossale, A.; Nova, I.; Tronconi, E. J. Catal. 2009, 265, 141. doi: 10.1016/j.jcat.2009.04.014
-
[21]
(21) Iwasaki, M.; Shinjoh, H. Appl. Catal. A: Gen. 2010, 390, 71. doi: 10.1016/j.apcata.2010.09.034
-
[22]
(22) Shi, X. Y.; Liu, F. D.; Xie, L. J.; Shan,W. P.; He, H. Environ. Sci. Technol. 2013, 47, 3293
-
[23]
(23) Sjovall, H.; Olsson, L.; Fridell, E.; Blint, R. J. Appl. Catal. B: Environ. 2006, 64, 180. doi: 10.1016/j.apcatb.2005.12.003
-
[24]
(24) Colombo, M.; Nova, I.; Tronconi, E. Catal. Today 2010, 151, 223. doi: 10.1016/j.cattod.2010.01.010
-
[25]
(25) Xie, L. J.; Liu, F. D.; Liu, K.; Shi, X. Y.; He, H. Catal. Sci. Technol. 2014, 4, 1104. doi: 10.1039/c3cy00924f
-
[26]
(26) Buchholz, A.;Wang,W.; Xu, M.; Arnold, A.; Hunger, M. Microporous Mesoporous Mat. 2002, 56, 267. doi: 10.1016/S1387-1811(02)00491-2
-
[27]
(27) Xu, L.; Du, A.;Wei, Y.;Wang, Y.; Yu, Z.; He, Y.; Zhang, X.; Liu, Z. Microporous Mesoporous Mat. 2008, 115, 332. doi: 10.1016/j.micromeso.2008.02.001
-
[28]
(28) Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X. Microporous Mesoporous Mat. 2002, 53, 97. doi: 10.1016/S1387-1811(02)00329-3
-
[29]
(29) Martins, G. V. A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H. O.; Marchese, L. J. Phys. Chem. C 2008, 112, 7193. doi: 10.1021/jp710613q
-
[30]
(30) Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. Chem. Eng. J. 2013, 225, 323 doi: 10.1016/j.cej.2013.03.078
-
[31]
(31) Onida, B.; Gabelica, Z.; Lourencüo, J.; Garrone, E. J. Phys. Chem. 1996, 100, 11072. doi: 10.1021/jp9600874
-
[32]
(32) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[33]
(33) Hadjiivanov, K.; Klissurski, D.; Ramis, G.; Busca, G. Appl. Catal. B: Environ. 1996, 7, 251. doi: 10.1016/0926-3373(95)00034-8
-
[34]
(34) Adelman, B. J.; Beutel, T.; Lei, G. D.; Sachtler,W. M. H. J. Catal. 1996, 158, 327. doi: 10.1006/jcat.1996.0031
-
[35]
(35) Wang, D.; Zhang, L.; Kamasamudram, K.; Epling,W. S. ACS Catal. 2013, 3, 871. doi: 10.1021/cs300843k
-
[36]
(36) Sjövall, H.; Fridell, E.; Blint, R. J.; Olsson, L. Top Catal. 2007, 42, 113.
-
[37]
(37) Qi, G. S.; Yang, R. T. J. Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h
-
[38]
(38) Trovarelli, A. Catal. Rev. -Sci. Eng. 1996, 38, 439. doi: 10.1080/01614949608006464
-
[39]
(39) Centi, G.; Perathoner, S. Catal. Today 1996, 29, 117. doi: 10.1016/0920-5861(95)00289-8
-
[40]
(40) Konduru, M. V.; Chuang, S. S. C. J. Catal. 2000, 196, 271. doi: 10.1006/jcat.2000.3046
-
[41]
(41) Fanning, P. E.; Vannice, M. A. J. Catal. 2002, 207, 166. doi: 10.1006/jcat.2002.3518
-
[42]
(42) Lei, G. D.; Adelman, B. J.; Sárkány, J.; Sachtler,W. M. H. Appl. Catal. B: Environ. 1995, 5, 245. doi: 10.1016/0926-3373(94)00043-3
-
[43]
(43) Hadjiivanov, K. I. Catal. Rev. -Sci. Eng. 2000, 42, 71. doi: 10.1081/CR-100100260
-
[44]
(44) Ivanova, E.; Hadjiivanov, K.; Klissurski, D.; Bevilacqua, M.; Armaroli, T.; Busca, G. Microporous Mesoporous Mat. 2001, 46, 299. doi: 10.1016/S1387-1811(01)00311-0
-
[45]
(45) Shi, L.; Yu, T.;Wang, X. Q.;Wang, J.; Shen, M. Q. Acta Phys. -Chim. Sin. 2013, 29, 1550. [石琳, 于铁, 王欣全, 王军, 沈美庆. 物理化学学报, 2013, 29, 1550.] doi: 10.3866/PKU.WHXB201304283
-
[46]
(46) Liu, Y.; Gao, Z. Acta Petrol Sin. Pet. Process Section 1996, 12, 35. [刘毅, 高滋. 石油学报: 石油加工, 1996, 12, 35.]
-
[47]
(47) Lok, B. M.; Messina, C. A.; Patton, R. L.; Gajek, R. T.; Cannon, T. R.; Flanigen, E. M. Crystalline Silicoaluminophosphates. US Patent 4440871, 1984.
-
[1]
-
-
-
[1]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[2]
Lihua Jin , Lei Tian , Chaozhan Wang , Jiawei Liu , Quan Bai , Yan Li . Teaching Exploration and Practice of the Instrumental Analysis Experiment “Distinguishing Green Plastic Bags by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy”. University Chemistry, 2026, 41(2): 360-365. doi: 10.12461/PKU.DXHX202502089
-
[3]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[4]
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
-
[5]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[6]
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
-
[7]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[8]
Zhen Li , Sujuan Zhang , Zhongliao Wang , Jinfeng Zhang , Gaoli Chen , Shifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179
-
[9]
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
-
[10]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[11]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[12]
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
-
[13]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[14]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[15]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[16]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[17]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[18]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[19]
Wenjie He , Lin Jing , Wendong Zhang , Xing'an Dong , Yan Zou , Xin Liu , Xin Lv , Peng Chen , Jiazhen Liao , Xiao Zhang , Rong Xiao , Yuechang Wei . Plasmonic metallic Bi-modified defective Bi4Ti3O12 nanosheets with upward migrating electrons for efficient photocatalytic NO removal and NO2 inhibition. Chinese Chemical Letters, 2026, 37(2): 111357-. doi: 10.1016/j.cclet.2025.111357
-
[20]
Tong WU , Yi ZHONG , Weimin ZHAO , Hong XU , Zhiping MAO , Linping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103
-
[1]
Metrics
- PDF Downloads(781)
- Abstract views(1020)
- HTML views(67)
Login In
DownLoad: