Citation: QIN Chen, TZENG Sheng-Yuan, ZHANG Bing, TZENG Wen-Bih. Rotamers of m-Methylanisole Studied by Mass-Analyzed Threshold Ionization Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1416-1425. doi: 10.3866/PKU.WHXB201405232
-
The S1←S0 electronic transition and threshold ionization of the cis and trans rotamers of m-methylanisole were investigated by using one- color resonant two- photon ionization and mass- analyzed threshold ionization techniques. The first electronic excitation energies (E1) of the cis and trans rotamers were determined to be (36049±2) and (36117±2) cm-1, while the adiabatic ionization energies (Ip) were (64859 ± 5) and (65110 ± 5) cm-1, respectively. The results of ab initio and density functional theory calculations provide a satisfactory interpretation for our experimental findings concerning the difference in the transitional energies of the cis and trans rotamers and assist in assigning the vibronic and cation spectra obtained in the present study. The observed active vibrations of both rotamers in the S1 and D0 states primarily consist of methyl torsion, in- plane ring deformation, and substituent- sensitive bending modes. Both experimental and theoretical results show that, for both cis and trans isomers, the geometry of the cation in the D0 state is somewhat different from that of the neutral species in the S1 state. In addition, the strengths of both the through- space substituent- substituent and substituent- ring interactions were found to follow the order: S0<S1<D0.
-
-
[1]
(1) Dian, B. C.; Longarte, A.;Winter, P. R.; Zwier, T. S. J. Chem. Phys. 2004, 120, 133. doi: 10.1063/1.1626540
-
[2]
(2) Pan, C. P.; Barkley, M. D. Biophys. J. 2004, 86, 3828. doi: 10.1529/biophysj.103.038901
-
[3]
(3) Oikawa, A.; Abe, H.; Mikami, N.; Ito, M. Chem. Phys. Lett. 1985, 116, 50. doi: 10.1016/0009-2614(85)80123-8
-
[4]
(4) McMurry, J. Organic Chemistry, 7th ed.; Brooke/Cole Publishing Company: Belmont, California, 2007.
-
[5]
(5) Breen, P. J.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Am. Chem. Soc. 1989, 111, 1958. doi: 10.1021/ja00188a002
-
[6]
(6) Ichimura, T.; Suzuki, T. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 79. doi: 10.1016/S1389-5567(00)00006-X
-
[7]
(7) Kojima, H.; Miyake, K.; Sakeda, K.; Suzuki, T.; Ichimura, T.; Tanaka, N.; Negishi, D.; Takayanagi, M.; Hanazaki, I. J. Mol. Struct. 2003, 655, 185. doi: 10.1016/S0022-2860(03)00258-8
-
[8]
(8) Alvarez-Valtierra, L.; Yi, J. T.; Pratt, D.W. J. Phys. Chem. B 2006, 110, 19914. doi: 10.1021/jp062050h
-
[9]
(9) Kinoshita, S.; Kojima, H.; Suzuki, T.; Ichimura, T.; Yoshida, K.; Sakai, M.; Fujii, M. Phys. Chem. Chem. Phys. 2001, 3, 4889. doi: 10.1039/b105719g
-
[10]
(10) Pradhan, M.; Li, C.; Lin, J. L.; Tzeng,W. B. Chem. Phys. Lett. 2005, 407, 100. doi: 10.1016/j.cplett.2005.03.068
-
[11]
(11) Lu, K. T.; Eiden, G. C.;Weisshaar, J. C. J. Phys. Chem. 1992, 96, 9742. doi: 10.1021/j100203a032
-
[12]
(12) Shiung, K. S.; Yu, D.; Huang, H. C.; Tzeng,W. B. J. Mol. Spectrosc. 2012, 274, 43. doi: 10.1016/j.jms.2012.04.004
-
[13]
(13) Ullrich, S.; Geppert,W. D.; Dessent, C. E. H.; Müller-Dethlefs, K. J. Phys. Chem. A 2000, 104, 11864.
-
[14]
(14) Yang, S. C.; Huang, S.W.; Tzeng,W. B. J. Phys. Chem. A 2010, 114, 11144. doi: 10.1021/jp1026652
-
[15]
(15) Lin, J. L.; Huang, C. J.; Lin, C. H.; Tzeng,W. B. J. Mol. Spectrosc. 2007, 244, 1. doi: 10.1016/j.jms.2007.05.001
-
[16]
(16) Zhang, S.; Tang, B. F.;Wang, Y. M.; Zhang, B. Chem. Phys. Lett. 2004, 397, 495. doi: 10.1016/j.cplett.2004.09.025
-
[17]
(17) Held, A.; Selzle, H. L.; Schlag, E.W. J. Phys. Chem. A 1998, 102, 9625.
-
[18]
(18) Lin, J. L.; Lin, K. C.; Tzeng,W. B. J. Phys. Chem. A 2002, 106, 6462. doi: 10.1021/jp0204713
-
[19]
(19) Okuyama, K.; Mikami, N.; Ito, M. Laser Chem. 1987, 7, 197. doi: 10.1155/LC.7.197
-
[20]
(20) Huang, J.; Huang, K.; Liu, S.; Luo, Q.; Tzeng,W. B. J. Photochem. Photobiol. A: Chem. 2007, 188, 252. doi: 10.1016/j.jphotochem.2006.12.016
-
[21]
(21) Huang, J.; Lin, J. L.; Tzeng,W. B. Spectrochim. Acta A 2007, 67, 989. doi: 10.1016/j.saa.2006.09.018
-
[22]
(22) Tzeng,W. B.; Lin, J. L. J. Phys. Chem. A 1999, 103, 8612.
-
[23]
(23) Sinclair,W. E.; Pratt, D.W. J. Chem. Phys. 1996, 105, 7942. doi: 10.1063/1.472710
-
[24]
(24) Chupka,W. A. J. Chem. Phys. 1993, 98, 4520. doi: 10.1063/1.465011
-
[25]
(25) Schlag, E.W. ZEKE Spectroscopy; Cambridge University Press: Cambridge, 1998; pp 40-41.
-
[26]
(26) Zhang, B.; Li, C.; Su, H.; Lin, J. L.; Tzeng,W. B. Chem. Phys. Lett. 2004, 390, 65. doi: 10.1016/j.cplett.2004.04.013
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[28]
(28) Varsanyi, G. Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives;Wiley: New York, 1974; pp 185, 201.
-
[29]
(29) Varsanyi G.; Szoke, S. Vibrational Spectra of Benzene Derivatives; Academic Press: New York, London, 1969.
-
[30]
(30) Wilson, E. B. Phys. Rev. 1934, 45, 706. doi: 10.1103/PhysRev.45.706
-
[31]
(31) Huang, H. C.; Shiung, K. S.; Jin, B. Y.; Tzeng,W. B. Chem. Phys. 2013, 425, 114. doi: 10.1016/j.chemphys.2013.08.013
-
[32]
(32) Lin, J. L.; Li, Y. C.; Tzeng,W. B. Chem. Phys. 2007, 334, 189. doi: 10.1016/j.chemphys.2007.03.002
-
[33]
(33) Yosida, K.; Suzuki, K.; Ishiuchi, S.; Sakai, M.; Fujii, M.; Dessent, C. E. H.; Müller-Dethlefs, K. Phys. Chem. Chem. Phys. 2002, 4, 2534. doi: 10.1039/b201107g
-
[34]
(34) Shinozaki, M.; Sakai, M.; Yamaguchi, S.; Fujioka, T.; Fujii, M. Phys. Chem. Chem. Phys. 2003, 5, 5044. doi: 10.1039/b309461h
-
[35]
(35) Xie, Y.; Su, H.; Tzeng,W. B. Chem. Phys. Lett. 2004, 394, 182. doi: 10.1016/j.cplett.2004.07.005
-
[36]
(36) Xu, Y.; Tzeng, S. Y.; Tzeng,W. B. Spectrochim. Acta A 2013, 102, 365. doi: 10.1016/j.saa.2012.10.020
-
[37]
(37) Tsai, C. Y.; Tzeng,W. B. J. Photochem. Photobiol. A 2013, 270, 53. doi: 10.1016/j.jphotochem.2013.07.014
-
[1]
-
-
[1]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[2]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[3]
Xiaolei Jiang , Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052
-
[4]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[5]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[6]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[7]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[8]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[9]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[10]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[11]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[12]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[13]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[16]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[17]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[18]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[19]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[20]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[1]
Metrics
- PDF Downloads(488)
- Abstract views(512)
- HTML views(2)