Citation: WU Dan, ZHANG Li-Min, ZHOU Dan-Na. Study on the Photodissociation Mechanism of N2O+ via B2Пi←X2П Transitions[J]. Acta Physico-Chimica Sinica, ;2014, 30(8): 1575-1580. doi: 10.3866/PKU.WHXB201405202
-
Photofragment (NO+ and N2+) excitation (PHOFEX) spectra of N2O+ via B2Пi←X2Π transitions was obtained over the wavelength range from 230 to 275 nm by preparing N2O+(X2Π(000)) ions via [3+1] resonance enhanced multiphoton ionization of N2O molecules at 360.50 nm. On the basis of the approximation of harmonic oscillation between N and NO or between N2 and O, the Franck-Condon factors for the B2Пi(00n)←X2Π(000) transitions of N2O+ ions were calculated using the potential curves and wavefunctions of the harmonic oscillator. The results of such calculations were compared with the photodissociation spectra of the B2Пi(00n)←X2Π(000) transition so as to estimate the validity of the rotational constants and the bond length of the B2Пi state obtained from previous studies. The photodissociation mechanism of the B2Пi(00n)←X2Π(000) transitions of N2O+ ions and the product branching ratios were also discussed.
-
Keywords:
-
Photodissociation
, - Nitrous oxide ion,
- Franck-Condon factor
-
-
-
[1]
(1) Wayne, R. P. Chemistry of Atmospheres; Clarendon: Oxford, 1991.
-
[2]
(2) Climate Change 1994; Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios ; Houghton, J. T., Filho, L. G. M., Harris, N. B. Eds; Cambridge University Press: Cambridge, 1995.
-
[3]
(3) Zhen, C.; Hu, Y. H.; Liu, S. L.; Zhou, X. G. Chin. J. Chem. Phys. 2010, 26, 94. [甄承, 胡亚华, 刘世林, 周晓国. 化学物理学报, 2010, 26, 94.]
-
[4]
(4) Cossart-Ma s, C. J. Chem. Phys. 2001, 114, 7368. doi: 10.1063/1.1363671
-
[5]
(5) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3451. doi: 10.1063/1.453893
-
[6]
(6) Szarka, M. G.;Wallace, S. C. J. Chem. Phys. 1991, 95, 2336. doi: 10.1063/1.460940
-
[7]
(7) Scheper, C. R.; Kuijt, J.; Buma,W. J.; DeLange, C. A. J. Chem. Phys. 1998, 109, 7844. doi: 10.1063/1.477431
-
[8]
(8) Patsilinakou, E.;Wiedmann, R. T.; Fotakis, C.; Grant, E. R. J. Chem. Phys. 1989, 91, 3916. doi: 10.1063/1.456823
-
[9]
(9) Dehmer, P. M.; Dehmer, J. L. J. Chem. Phys. 1980, 73, 126. doi: 10.1063/1.439906
-
[10]
(10) Cvitas, T.; Klasinc, L.; Kovac, B. J. Chem. Phys. 1983, 79, 1567.
-
[11]
(11) Orth, R. G.; Dunbar, R. C. J. Chem. Phys. 1977, 66, 1619.
-
[12]
(12) Alagia, M.; Candori, P.; Falcinelli, S.; Lavollée, M.; Pirani, F.; Richter, R.; Strangers, S., Vecchiocattivi, F. Chemical Physics Letters 2006, 432, 398. doi: 10.1016/j.cplett.2006.10.100
-
[13]
(13) Nenner, I.; Guyon, P.; Baer, T.; vers, T. R. J. Chem. Phys. 1980, 72, 6587. doi: 10.1063/1.439115
-
[14]
(14) Chen,W.; Liu, J. J. Phys. Chem. A 2003, 107, 8086. doi: 10.1021/jp022389d
-
[15]
(15) Koppel, H.; Cederbaum, L. S.; Domcke,W. Chemical Physics1982, 69, 175. doi: 10.1016/0301-0104(82)88144-5
-
[16]
(16) Danis, P. O.;Wyttenbach, T.; Maier, J. P. J. Chem. Phys. 1988, 88, 3453.
-
[17]
(17) Zhang, L. M.; Chen, J.; Xu, H. F.; Dai, J. H.; Liu, S. L.; Ma, X. X. J. Chem. Phys. 2001, 114, 1078.
-
[18]
(18) Zhang, L. M.;Wang, F.;Wang, Z.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2004, 108, 1342. doi: 10.1021/jp036820q
-
[19]
(19) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.;Wang, Z.; Yu, S. Q. Chin. J. Chem. Phys. 2005, 18, 657.
-
[20]
(20) Zhuang, X. J.; Zhang, L. M.;Wang, J. T.; Ma, Y. C.; Yu, S. Q.; Liu, S. L.; Ma, X. X. J. Phys. Chem. A 2006, 110, 6256.
-
[21]
(21) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Acta Phys. -Chim. Sin. 2012, 28, 963. [周丹娜, 张立敏, 陈琳, 吴丹. 物理化学学报, 2012, 28, 963.] doi: 10.3866/PKU.WHXB201202162
-
[22]
(22) Zhou, D. N.; Zhang, L. M.; Chen, L.;Wu, D. Chin. J. Chem. Phys. 2013, 26, 265. [周丹娜, 张立敏, 陈琳, 吴丹. 化学物理学报, 2013, 26, 265.] doi: 10.1063/1674-0068/26/03/265-269
-
[23]
(23) Ma, Y. C.; Zhang, L. M.; Zhuang, X. J.;Wang, J. T.; Yang, M. P.; Yu, S. Q. Acta Phys. -Chim. Sin. 2006, 22, 1532. [马玉超, 张立敏, 庄秀娟, 王金婷, 杨茂萍, 俞书勤. 物理化学学报, 2006, 22, 1532.] doi: 10.1016/S1872-1508(06)60078-8
-
[24]
(24) Jolma, K.; Kauppinen, J.; Horneman, V. M. J. Mol. Spectrosc. 1983, 101, 278. doi: 10.1016/0022-2852(83)90133-9
-
[25]
(25) Toth, R. A. Appl. Opt. 1991, 30, 5289. doi: 10.1364/AO.30.005289
-
[26]
(26) Chambaud, G.; Gritli, H.; Rosmus, P.;Werner, H. J.; Knowles, P. J. Molecular Physics 2000, 98, 1793.
-
[1]
-
-
[1]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[2]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[12]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[13]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[14]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[15]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[17]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[18]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[19]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[20]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[1]
Metrics
- PDF Downloads(671)
- Abstract views(381)
- HTML views(3)