Citation: ZHANG Xiang-Xiong, CHEN Min. Influence of Homogeneous Electric Field on the Structure and Growth of Ice[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1208-1214. doi: 10.3866/PKU.WHXB201405095 shu

Influence of Homogeneous Electric Field on the Structure and Growth of Ice

  • Received Date: 14 March 2014
    Available Online: 9 May 2014

    Fund Project:

  • Homogeneous crystallization of supercooled water under electric field with strength ranging from 4.0 to 40.0 V·nm-1 was investigated by using molecular simulation technique. The liquid-solid transition was successfully obtained based on ice component analysis using the CHILL al rithm. The analysis suggested that the produced crystalline was cubic ice dominant. The influence of the field strength on the structure and the growth rate of the ice was studied. The results revealed that the presence of an electric field drove the system to crystallize rapidly into dense and distorted cubic ice. The density of the crystals increased as a function of the field strength, from 0.98 to 1.08 g·cm-3. The growth rate of the ice nucleus increased along with the field strength according to the characteristic time derived from the Avrami equation which ranged from 0.254 to 5.513 ns. This type of acceleration can be partially attributed to the enhancement of the rotational dynamics of the water molecules. Moreover, by monitoring the formation history of the cubic ice, we found that the defective ice acted as a transition state linking the liquid water and the cubic ice.

  • 加载中
    1. [1]

      (1) Sassen, K.; Liou, K. N.; Kinne, S.; Griffin, M. Science 1985, 227 (4685), 411. doi: 10.1126/science.227.4685.411

    2. [2]

      (2) Sun,W.; Xu, X. B.; Zhang, H.; Xu, C. X. Cryobiology 2008, 56 (1), 93. doi: 10.1016/j.cryobiol.2007.10.173

    3. [3]

      (3) Petersen, A.; Schneider, H.; Rau, G.; Glasmacher, B. Cryobiology 2006, 53 (2), 248. doi: 10.1016/j.cryobiol.2006.06.005

    4. [4]

      (4) Orlowska, M.; Havet, M.; Le-Bail, A. Food Res. Int. 2009, 42 (7), 879. doi: 10.1016/j.foodres.2009.03.015

    5. [5]

      (5) Wilen, L. Science 1993, 259 (5100), 1469. doi: 10.1126/science.259.5100.1469-a

    6. [6]

      (6) Laforte, J. L.;Allaire, M.A.; Laflamme, J. Atmos. Res. 1998, 46 (1-2), 143. doi: 10.1016/S0169-8095(97)00057-4

    7. [7]

      (7) Sun,W.; Zhong, C.; Huang, S. Y. Mol. Simul. 2005, 31 (8), 555. doi: 10.1080/0892702500138483

    8. [8]

      (8) Svishchev, I. M.; Kusalik, P. G. Phys. Rev. B 1996, 53 (14), 8815. doi: 10.1103/PhysRevB.53.R8815

    9. [9]

      (9) Svishchev, I. M.; Kusalik, P. G. J. Am. Chem. Soc. 1996, 118 (3), 649. doi: 10.1021/ja951624l

    10. [10]

      (10) Svishchev, I. M.; Kusalik, P. G. Phys. Rev. Lett. 1994, 73 (7), 975. doi: 10.1103/PhysRevLett.73.975

    11. [11]

      (11) Svishchev, I. M.; Kusalik, P. G. Chem. Phys. Lett. 1995, 239 (4-6), 349. doi: 10.1016/0009-2614(95)00464-F

    12. [12]

      (12) Zangi, R. J. Phys.: Condes. Matter 2004, 16 (45), S5371. doi: 10.1088/0953-8984/16/45/005

    13. [13]

      (13) Suresh, S. J. J. Chem. Phys. 2007, 126 (20), 204705. doi: 10.1063/1.2722745

    14. [14]

      (14) Jung, D. H.; Yang, J. H.; Jhon, M. S. Chem. Phys. 1999, 244 (2-3), 331. doi: 10.1016/S0301-0104(99)00119-6

    15. [15]

      (15) Bartlett, J. T.; van den Heuval, A. P.; Mason, B. J. Z. Angew. Math. Phys. 1963, 14 (5), 599. doi: 10.1007/BF01601267

    16. [16]

      (16) Latham, J.; Saunders, C. P. R. Q. J. R. Meteorol. Soc. 1970, 96 (408), 257. doi: 10.1002/qj.49709640808

    17. [17]

      (17) Libbrecht, K. G.; Tanusheva, V. M. Phys. Rev. Lett. 1998, 81 (1), 176. doi: 10.1103/PhysRevLett.81.176

    18. [18]

      (18) Libbrecht, K. G.; Crosby, T.; Swanson, M. J. Cryst. Growth 2002, 240 (1), 241. doi: 10.1016/S0022-0248(01)02089-9

    19. [19]

      (19) Hu, H.; Hou, H.;Wang, B. J. Phys. Chem. C 2012, 116 (37), 19773. doi: 10.1021/jp304266d

    20. [20]

      (20) Moore, E. B.; de la Llave, E.;Welke, K.; Scherlis, D.A.; Molinero, V. Phys. Chem. Chem. Phys. 2010, 12 (16), 4124. doi: 10.1039/b919724a

    21. [21]

      (21) Maerzke, K. A.; Siepmann, J. I. J. Phys. Chem. B 2010, 114 (12), 4261. doi: 10.1021/jp9101477

    22. [22]

      (22) Bratko, D.; Daub, C. D.; Leung, K.; Luzar, A. J. Am. Chem. Soc. 2007, 129 (9), 2504. doi: 10.1021/ja0659370

    23. [23]

      (23) Ge, Z. P.; Shi, Y. C.; Li, X. Y. Acta Phys. -Chim. Sin. 2013, 29 (8), 1655. [葛振朋, 石彦超, 李晓毅. 物理化学学报, 2013, 29 (8), 1655.] doi: 10.3866/PKU.WHXB201305222

    24. [24]

      (24) Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. L.; rdon, J. G.; Melroy, O. R.;Wiesler, D. G.; Yee, D.; Sorensen, L. B. Nature 1994, 368 (6470), 444. doi: 10.1038/368444a0

    25. [25]

      (25) Berendsen, H.; Grigera, J.; Straatsma, T. J. Phys. Chem. 1987, 91 (24), 6269. doi: 10.1021/j100308a038

    26. [26]

      (26) Fernandez, R. G.; Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2006, 124 (14), 144506. doi: 10.1063/1.2183308

    27. [27]

      (27) Razul, M. S. G.; Kusalik, P. G. J. Chem. Phys. 2011, 134 (1), 014710. doi: 10.1063/1.3518984

    28. [28]

      (28) Vrbka, L.; Jungwirth, P. J. Mol. Liq. 2007, 134 (1-3), 64. doi: 10.1016/j.molliq.2006.12.011

    29. [29]

      (29) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926. doi: 10.1063/1.445869

    30. [30]

      (30) Vega, C.; McBride, C.; Sanz, E.; Abascal, J. L. F. Phys. Chem. Chem. Phys. 2005, 7 (7), 1450. doi: 10.1039/b418934e

    31. [31]

      (31) Abascal, J. L. F.; Sanz, E.; Fernandez, R. G.; Vega, C. J. Chem. Phys. 2005, 122 (23), 234511.  doi: 10.1063/1.1931662

    32. [32]

      (32) Nada, H.; van der Eerden, J. J. Chem. Phys. 2003, 118 (16), 7401. doi: 10.1063/1.1562610

    33. [33]

      (33) Gavish, M.;Wang, J.; Eisenstein, M.; Lahav, M.; Leiserowitz, L. Science 1992, 256 (5058), 815. doi: 10.1126/science.1589763

    34. [34]

      (34) Gómez-Monivas, S.; Sáenz, J. J.; Calleja, M.; García, R. Phys. Rev. Lett. 2003, 91 (5), 056101. doi: 10.1103/PhysRevLett.91.056101

    35. [35]

      (35) Choi, Y. C.; Pak, C.; Kim, K. S. J. Chem. Phys. 2006, 124 (9), 094308. doi: 10.1063/1.2173259

    36. [36]

      (36) Plimpton, S. J. Comput. Phys. 1995, 117 (1), 1. doi: 10.1006/jcph.1995.1039

    37. [37]

      (37) Murdachaew, G.; Mundy, C. J.; Schenter, G. K.; Laino, T.; Hutter, J. J. Phys. Chem. A 2011, 115 (23), 6046. doi: 10.1021/jp110481m

    38. [38]

      (38) Yan, J.; Patey, G. N. J. Phys. Chem. Lett. 2011, 2 (20), 2555. doi: 10.1021/jz201113m

    39. [39]

      (39) Bernal, J. D.; Fowler, R. H. J. Chem. Phys. 1933, 1 (8), 515. doi: 10.1063/1.1749327

    40. [40]

      (40) Errington, J. R.; Debenedetti, P. G. Nature 2001, 409 (6818), 318. doi: 10.1038/35053024

    41. [41]

      (41) Moore, E. B.; Molinero, V. J. Chem. Phys. 2010, 132 (24), 244504. doi: 10.1063/1.3451112

    42. [42]

      (42) Kashchiev, D. Nucleation: Basic Theory with Applications, 1st ed.; Butterworth-Heinemann: Boston, 2000; pp 377-390.

    43. [43]

      (43) Vrbka, L.; Jungwirth, P. Phys. Rev. Lett. 2005, 95 (14), 148501. doi: 10.1103/PhysRevLett.95.148501

    44. [44]

      (44) Hu, X. H.; Elghobashi-Meinhardt, N.; Gembris, D.; Smith, J. C. J. Chem. Phys. 2011, 135, 134507. doi: 10.1063/1.3643077

    45. [45]

      (45) Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123 (33), 8047. doi: 10.1021/ja010312h

    46. [46]

      (46) Moore, E. B.; Molinero, V. Phys. Chem. Chem. Phys. 2011, 13 (44), 20008. doi: 10.1039/c1cp22022e


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    8. [8]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(388)
  • Abstract views(621)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return