Citation: XU Ling-Ling, ZHANG Xiao-Hua, CHEN Jin-Hua. Synthesis and Electrochemical Supercapacitive Properties of Nitrogen-Doped Mesoporous Carbons[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1274-1280. doi: 10.3866/PKU.WHXB201405044 shu

Synthesis and Electrochemical Supercapacitive Properties of Nitrogen-Doped Mesoporous Carbons

  • Received Date: 14 March 2014
    Available Online: 4 May 2014

    Fund Project:

  • Nitrogen-doped mesoporous carbons (NMCs) were synthesized by direct carbonization of zeolitic imidazolate framework-8 (ZIF-8) nanopolyhedrons. The surface morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and surface area and pore size analyzer. The electrochemical supercapacitive properties of the NMCs were also investigated. The results showed that the NMCs had a uniformmorphology, mesoporous nanostructure, and high surface area (2737m2·g-1). On the other hand, based on the excellent surface wettability, pseudocapacitive behavior and electrolyte accessibility resulted fromN-doping and the mesoporous structure, the NMCs exhibited excellent electrochemical supercapacitive properties: a high specific capacitance (307 F·g-1 in 1.0 mol·L-1 H2SO4 solution, at 1 A·g-1), od power characteristics, and satisfactory stability (the capacitance retained ratio was 96.9%after 5000 cycles even at a high current density of 10A·g-1).

  • 加载中
    1. [1]

      (1) Miller, J. R.; Simon, P. Science 2008, 321 (5889), 651. doi: 10.1126/science.1158736

    2. [2]

      (2) Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770

    3. [3]

      (3) Susanti, D.; Tsai, D. S.; Huang, Y. S.; Korotcov, A.; Chung, W. H. J. Phys. Chem. C 2007, 111 (26), 9530. doi: 10.1021/ jp071039u

    4. [4]

      (4) Wang, K.; Huang, J. Y.; Wei, Z. X. J. Phys. Chem. C 2010, 114 (17), 8062. doi: 10.1021/jp9113255

    5. [5]

      (5) Zhang, Y.; Feng, H.;Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T. C.; Dong, H. C.; Li, X. F.; Zhang, L. S. Int. J. Hydrog. Energy 2009, 34 (11), 4889.

    6. [6]

      (6) Wu, X. H.; Hong, X. T.; Nan, J. M.; Luo, Z. P.; Zhang, Q. Y.; Li, L. S.; Chen, H. Y. U.; Hui, K. S. Microporous 2012, 160, 25. doi: 10.1016/j.micromeso.2012.04.013

    7. [7]

      (7) Ania, C. O.; Khomenko, V.; Raymundo-Piñero, E.; Parra, J. B.; Béguin, F. Adv. Funct. Mater. 2007, 17 (11), 1828.

    8. [8]

      (8) Zhu, J. Y.; He, J. H. ACS Appl. Mater. Inter. 2012, 4 (3), 1770. doi: 10.1021/am3000165

    9. [9]

      (9) Kim, W.; Joo, J. B.; Kim, N.; Oh, S.; Kim, P.; Yi, J. Carbon 2009, 47 (5), 1407. doi: 10.1016/j.carbon.2009.01.043

    10. [10]

      (10) Ndamanisha, J. C.; Hou, Y.; Bai, J.; Guo, L. P. Electrochim. Acta 2009, 54 (15), 3935. doi: 10.1016/j.electacta.2009.02.013

    11. [11]

      (11) Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. ACS Nano 2013, 7 (7), 6047. doi: 10.1021/nn401850z

    12. [12]

      (12) Dai, Y. H.; Jiang, H.; Hu, Y. J.; Fu, Y.; Li, C. Z. Ind. Eng. Chem. Res. 2014, 53 (8), 3125. doi: 10.1021/ie403950t

    13. [13]

      (13) Li, W.; Zhou, J.; Xing, W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文,周晋,刑伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]

    14. [14]

      (14) Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28, 843. [刘冬,沈军,李亚捷, 刘念平, 刘斌.物理化学学报, 2012, 28, 843.]

    15. [15]

      (15) Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.;Wu, Z. Y.; Yu, S. H. ACS Nano 2012, 6 (8), 7092. doi: 10.1021/nn302147s

    16. [16]

      (16) Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S. Y.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22 (45), 5202. doi: 10.1002/adma.201002647

    17. [17]

      (17) Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Chem. Mater. 2008, 20 (22), 7195.

    18. [18]

      (18) Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Adv. Mater. 2012, 24 (37), 5130. doi: 10.1002/adma.201201948

    19. [19]

      (19) Guo, H. L.; Gao, Q. M. J. Power Sources 2009, 186 (2), 551. doi: 10.1016/j.jpowsour.2008.10.024

    20. [20]

      (20) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏,郭慧林,彭三,宁生科.物理化学学报, 2012, 28, 2745.]

    21. [21]

      (21) Li, L. X.; Tao, J.; Di, X.; An, B. G. Acta Phys. -Chim. Sin. 2013, 29, 111. [李莉香,陶晶,耿新,安百刚.物理化学学报, 2013, 29, 111.]

    22. [22]

      (22) Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273 (5274), 483. doi: 10.1126/science.273.5274.483

    23. [23]

      (23) Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Carbon 1998, 36 (9), 1257. doi: 10.1016/S0008-6223(97) 00202-9

    24. [24]

      (24) Ahmadpour, A.; Do, D. D. Carbon 1996, 34 (4), 471. doi: 10.1016/0008-6223(95) 00204-9

    25. [25]

      (25) Yang, X.; Tomita, A.; Kyotani, T. J. Am. Chem. Soc. 2005, 127 (25), 8956. doi: 10.1021/ja052357e

    26. [26]

      (26) Schüth, F. Angew. Chem. Int. Edit. 2003, 42 (31), 3604.

    27. [27]

      (27) Hu, M.; Reboul, J. L.; Furukawa, S.; Torad, N. L.; Ji, Q. M.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. J. Am. Chem. Soc. 2012, 134 (6), 2864. doi: 10.1021/ja208940u

    28. [28]

      (28) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130 (16), 5390. doi: 10.1021/ja7106146

    29. [29]

      (29) Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Carbon 2010, 48 (2), 456. doi: 10.1016/j.carbon.2009.09.061

    30. [30]

      (30) Liang, C. D.; Li, Z. J.; Dai, S. Angew. Chem. Int. Edit. 2008, 47 (20), 3696.

    31. [31]

      (31) Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Chem. Mater 2011, 23 (8), 2130.

    32. [32]

      (32) Venna, S. R.; Jasinski, J. B.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132 (51), 18030. doi: 10.1021/ja109268m

    33. [33]

      (33) Jiang, Z.; Sun, H. Y.; Qin, Z. H.; Jiao, X. L.; Chen, D. R. Chem. Commun. 2012, 48 (30), 3620. doi: 10.1039/c2cc00004k

    34. [34]

      (34) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007, 129 (32), 9999. doi: 10.1021/ja072367a

    35. [35]

      (35) Matsuoka, K.; Yamagishi, Y.; Yamazaki, T.; Setoyama, N.; Tomita, A.; Kyotani, T. Carbon 2005, 43 (4), 876. doi: 10.1016/j.carbon.2004.10.050

    36. [36]

      (36) Strelko, V. V.; Kuts, V. S.; Thrower, P. A. Carbon 2000, 38 (10), 1499. doi: 10.1016/S0008-6223(00) 00121-4

    37. [37]

      (37) Huicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M. Chem. Mater. 2005, 17 (5), 1241.

    38. [38]

      (38) Guo, C. X.; Li, C. M. Energ. Envirom. Sci. 2011, 4 (11), 4504. doi: 10.1039/c1ee01676h

    39. [39]

      (39) Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q. Adv. Funct. Mater. 2009, 19 (11), 1800.

    40. [40]

      (40) Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2008, 47 (2), 373.

    41. [41]

      (41) Hu, C. C.; Wang, C. C. J. Electrochem. Soc. 2003, 150 (8), 1079. doi: 10.1149/1.1587725

    42. [42]

      (42) Tan, Y. M.; Xu, C. F.; Chen, G. X.; Liu, Z. H.; Ma, M.; Xie, Q. J.; Zheng, N. F.; Yao, S. Z. ACS Appl. Mater. Inter. 2013, 5 (6), 2241. doi: 10.1021/am400001g

    43. [43]

      (43) Pham, V. H.; Hur, S. H.; Kim, E. J.; Kim, B. S.; Chung, J. S. Chem. Commun. 2013, 49 (59), 6665. doi: 10.1039/c3cc43503b


  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    19. [19]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(726)
  • Abstract views(715)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return