Citation: XU Ling-Ling, ZHANG Xiao-Hua, CHEN Jin-Hua. Synthesis and Electrochemical Supercapacitive Properties of Nitrogen-Doped Mesoporous Carbons[J]. Acta Physico-Chimica Sinica, ;2014, 30(7): 1274-1280. doi: 10.3866/PKU.WHXB201405044
-
Nitrogen-doped mesoporous carbons (NMCs) were synthesized by direct carbonization of zeolitic imidazolate framework-8 (ZIF-8) nanopolyhedrons. The surface morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and surface area and pore size analyzer. The electrochemical supercapacitive properties of the NMCs were also investigated. The results showed that the NMCs had a uniformmorphology, mesoporous nanostructure, and high surface area (2737m2·g-1). On the other hand, based on the excellent surface wettability, pseudocapacitive behavior and electrolyte accessibility resulted fromN-doping and the mesoporous structure, the NMCs exhibited excellent electrochemical supercapacitive properties: a high specific capacitance (307 F·g-1 in 1.0 mol·L-1 H2SO4 solution, at 1 A·g-1), od power characteristics, and satisfactory stability (the capacitance retained ratio was 96.9%after 5000 cycles even at a high current density of 10A·g-1).
-
Keywords:
-
Mesoporous carbon
, - Nitrogen doping,
- Carbonization,
- Capacitive property
-
-
-
[1]
(1) Miller, J. R.; Simon, P. Science 2008, 321 (5889), 651. doi: 10.1126/science.1158736
-
[2]
(2) Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
-
[3]
(3) Susanti, D.; Tsai, D. S.; Huang, Y. S.; Korotcov, A.; Chung, W. H. J. Phys. Chem. C 2007, 111 (26), 9530. doi: 10.1021/ jp071039u
-
[4]
(4) Wang, K.; Huang, J. Y.; Wei, Z. X. J. Phys. Chem. C 2010, 114 (17), 8062. doi: 10.1021/jp9113255
-
[5]
(5) Zhang, Y.; Feng, H.;Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T. C.; Dong, H. C.; Li, X. F.; Zhang, L. S. Int. J. Hydrog. Energy 2009, 34 (11), 4889.
-
[6]
(6) Wu, X. H.; Hong, X. T.; Nan, J. M.; Luo, Z. P.; Zhang, Q. Y.; Li, L. S.; Chen, H. Y. U.; Hui, K. S. Microporous 2012, 160, 25. doi: 10.1016/j.micromeso.2012.04.013
-
[7]
(7) Ania, C. O.; Khomenko, V.; Raymundo-Piñero, E.; Parra, J. B.; Béguin, F. Adv. Funct. Mater. 2007, 17 (11), 1828.
-
[8]
(8) Zhu, J. Y.; He, J. H. ACS Appl. Mater. Inter. 2012, 4 (3), 1770. doi: 10.1021/am3000165
-
[9]
(9) Kim, W.; Joo, J. B.; Kim, N.; Oh, S.; Kim, P.; Yi, J. Carbon 2009, 47 (5), 1407. doi: 10.1016/j.carbon.2009.01.043
-
[10]
(10) Ndamanisha, J. C.; Hou, Y.; Bai, J.; Guo, L. P. Electrochim. Acta 2009, 54 (15), 3935. doi: 10.1016/j.electacta.2009.02.013
-
[11]
(11) Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. ACS Nano 2013, 7 (7), 6047. doi: 10.1021/nn401850z
-
[12]
(12) Dai, Y. H.; Jiang, H.; Hu, Y. J.; Fu, Y.; Li, C. Z. Ind. Eng. Chem. Res. 2014, 53 (8), 3125. doi: 10.1021/ie403950t
-
[13]
(13) Li, W.; Zhou, J.; Xing, W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文,周晋,刑伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]
-
[14]
(14) Liu, D.; Shen, J.; Li, Y. J.; Liu, N. P.; Liu, B. Acta Phys. -Chim. Sin. 2012, 28, 843. [刘冬,沈军,李亚捷, 刘念平, 刘斌.物理化学学报, 2012, 28, 843.]
-
[15]
(15) Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.;Wu, Z. Y.; Yu, S. H. ACS Nano 2012, 6 (8), 7092. doi: 10.1021/nn302147s
-
[16]
(16) Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S. Y.; Antonietti, M.; Titirici, M. M. Adv. Mater. 2010, 22 (45), 5202. doi: 10.1002/adma.201002647
-
[17]
(17) Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Chem. Mater. 2008, 20 (22), 7195.
-
[18]
(18) Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Müllen, K. Adv. Mater. 2012, 24 (37), 5130. doi: 10.1002/adma.201201948
-
[19]
(19) Guo, H. L.; Gao, Q. M. J. Power Sources 2009, 186 (2), 551. doi: 10.1016/j.jpowsour.2008.10.024
-
[20]
(20) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏,郭慧林,彭三,宁生科.物理化学学报, 2012, 28, 2745.]
-
[21]
(21) Li, L. X.; Tao, J.; Di, X.; An, B. G. Acta Phys. -Chim. Sin. 2013, 29, 111. [李莉香,陶晶,耿新,安百刚.物理化学学报, 2013, 29, 111.]
-
[22]
(22) Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tománek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273 (5274), 483. doi: 10.1126/science.273.5274.483
-
[23]
(23) Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Carbon 1998, 36 (9), 1257. doi: 10.1016/S0008-6223(97) 00202-9
-
[24]
(24) Ahmadpour, A.; Do, D. D. Carbon 1996, 34 (4), 471. doi: 10.1016/0008-6223(95) 00204-9
-
[25]
(25) Yang, X.; Tomita, A.; Kyotani, T. J. Am. Chem. Soc. 2005, 127 (25), 8956. doi: 10.1021/ja052357e
-
[26]
(26) Schüth, F. Angew. Chem. Int. Edit. 2003, 42 (31), 3604.
-
[27]
(27) Hu, M.; Reboul, J. L.; Furukawa, S.; Torad, N. L.; Ji, Q. M.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. J. Am. Chem. Soc. 2012, 134 (6), 2864. doi: 10.1021/ja208940u
-
[28]
(28) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130 (16), 5390. doi: 10.1021/ja7106146
-
[29]
(29) Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Carbon 2010, 48 (2), 456. doi: 10.1016/j.carbon.2009.09.061
-
[30]
(30) Liang, C. D.; Li, Z. J.; Dai, S. Angew. Chem. Int. Edit. 2008, 47 (20), 3696.
-
[31]
(31) Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Chem. Mater 2011, 23 (8), 2130.
-
[32]
(32) Venna, S. R.; Jasinski, J. B.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132 (51), 18030. doi: 10.1021/ja109268m
-
[33]
(33) Jiang, Z.; Sun, H. Y.; Qin, Z. H.; Jiao, X. L.; Chen, D. R. Chem. Commun. 2012, 48 (30), 3620. doi: 10.1039/c2cc00004k
-
[34]
(34) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007, 129 (32), 9999. doi: 10.1021/ja072367a
-
[35]
(35) Matsuoka, K.; Yamagishi, Y.; Yamazaki, T.; Setoyama, N.; Tomita, A.; Kyotani, T. Carbon 2005, 43 (4), 876. doi: 10.1016/j.carbon.2004.10.050
-
[36]
(36) Strelko, V. V.; Kuts, V. S.; Thrower, P. A. Carbon 2000, 38 (10), 1499. doi: 10.1016/S0008-6223(00) 00121-4
-
[37]
(37) Huicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M. Chem. Mater. 2005, 17 (5), 1241.
-
[38]
(38) Guo, C. X.; Li, C. M. Energ. Envirom. Sci. 2011, 4 (11), 4504. doi: 10.1039/c1ee01676h
-
[39]
(39) Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q. Adv. Funct. Mater. 2009, 19 (11), 1800.
-
[40]
(40) Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2008, 47 (2), 373.
-
[41]
(41) Hu, C. C.; Wang, C. C. J. Electrochem. Soc. 2003, 150 (8), 1079. doi: 10.1149/1.1587725
-
[42]
(42) Tan, Y. M.; Xu, C. F.; Chen, G. X.; Liu, Z. H.; Ma, M.; Xie, Q. J.; Zheng, N. F.; Yao, S. Z. ACS Appl. Mater. Inter. 2013, 5 (6), 2241. doi: 10.1021/am400001g
-
[43]
(43) Pham, V. H.; Hur, S. H.; Kim, E. J.; Kim, B. S.; Chung, J. S. Chem. Commun. 2013, 49 (59), 6665. doi: 10.1039/c3cc43503b
-
[1]
-
-
[1]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[5]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[6]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[7]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[8]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[9]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[10]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[11]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[12]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[13]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[14]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[15]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[16]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[17]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[18]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[19]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[20]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[1]
Metrics
- PDF Downloads(726)
- Abstract views(715)
- HTML views(8)