Citation: YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1180-1186. doi: 10.3866/PKU.WHXB201404141 shu

In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3

  • Received Date: 9 January 2014
    Available Online: 14 April 2014

    Fund Project:

  • Cobalt nanoparticles (NPs) supported on reduced graphene oxide (R ) were synthesized by a one-step in situ co-reduction of an aqueous solution of cobalt(Ⅱ) chloride and graphene oxide ( ) using ammonia borane (AB) as the sole reductant under ambient conditions. The as-synthesized Co/R catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of AB at room temperature. The assynthesized Co/R nanocatalysts exhibited much higher catalytic activity than the R -free Co counterpart. Compared with the nanocatalysts reduced by NaBH4, the Co/R nanocatalysts generated by the milder reductant AB exhibited superior catalytic activity. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co/R has zero order kinetics with respect to the substrate concentration. The hydrolysis activation energy is estimated to be about 27.10 kJ·mol-1, which is lower than most reported data for the same reaction conusing non-noble metal catalysts and some noble metal containing catalysts. Furthermore, the R -supported Co NPs show od recyclability and magnetic reusability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to the facile preparation of other R -based metallic systems.

  • 加载中
    1. [1]

      (1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634

    2. [2]

      (2) Grochala,W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283. doi: 10.1021/cr030691s

    3. [3]

      (3) Graetz, J. Chem. Soc. Rev. 2009, 38, 73. doi: 10.1039/b718842k

    4. [4]

      (4) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.W. Chem. Rev. 2012, 112, 782. doi: 10.1021/cr200274s

    5. [5]

      (5) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. doi: 10.1021/cr100088b

    6. [6]

      (6) Chen, P.; Zhu, M. Mater. Today 2008, 11, 36.

    7. [7]

      (7) Lu, Z. H.; Xu, Q. Funct. Mater. Lett. 2012, 5, 1230001. doi: 10.1142/S1793604712300010

    8. [8]

      (8) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698. doi: 10.1039/c2ee22937d

    9. [9]

      (9) Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y.W.; Chen, X. S. J. Nanomater. 2014, 729029.

    10. [10]

      (10) Rakap, M.; Kalu, E. E.; Özkar, S. J. Power Sources 2012, 210, 184. doi: 10.1016/j.jpowsour.2012.03.025

    11. [11]

      (11) Yan, J. M.;Wang, Z. L.;Wang, H. L.; Jiang, Q. J. Mater. Chem. 2012, 22, 10990. doi: 10.1039/c2jm31042b

    12. [12]

      (12) Yang, Y.W.; Zhang, F.;Wang, H. L.; Yao, Q. L.; Chen, X. S.; Lu, Z. H. J. Nanomater. 2014, 294530.

    13. [13]

      (13) Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Inorg. Chem. 2007, 46, 788. doi: 10.1021/ic061712e

    14. [14]

      (14) Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass,W. N.; re, J. P. J. Power Sources 2009, 188, 238. doi: 10.1016/j.jpowsour.2008.11.085

    15. [15]

      (15) Du, Y. S.; Cao, N.; Yang, L.; Luo,W.; Cheng, G. Z. New J. Chem. 2013, 37, 3035. doi: 10.1039/c3nj00552f

    16. [16]

      (16) Xi, P. X.; Chen, F. J.; Xie, G. Q.; Ma, C.; Liu, H.Y.; Shao, C. W.;Wang, J.; Xu, Z. H.; Xu, X. M.; Zeng, Z. Z. Nanoscale 2012, 4, 5597. doi: 10.1039/c2nr31010d

    17. [17]

      (17) Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135. doi: 10.1016/j.jpowsour.2007.03.015

    18. [18]

      (18) Yang, L.; Luo,W.; Cheng, G. E. ACS Appl. Mater. Interfaces 2013, 5, 8231. doi: 10.1021/am402373p

    19. [19]

      (19) Rachiero, G. P.; Demirci, U. B.; Miele, P. Int. J. Hydrog. Energy 2011, 36, 7051. doi: 10.1016/j.ijhydene.2011.03.009

    20. [20]

      (20) Simagia, V. I.; Komova, O. V.; Ozerova, A. M.; Netskina, O. V.; Ode va, G. V.; Kelleman, D. G.; Bulavcheoko, O. V.; Ishchenko, A. V. Appl. Catal. A: Gen. 2011, 384, 86.

    21. [21]

      (21) Yan, L.; Su, J.; Meng, X. Y.; Luo,W.; Cheng, G. Z. J. Mater. Chem. A 2013, 1, 10016. doi: 10.1039/c3ta11835e

    22. [22]

      (22) Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang,W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Int. J. Hydrog. Energy 2013, 38, 5330. doi: 10.1016/j.ijhydene.2013.02.076

    23. [23]

      (23) Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. J. Mater. Chem. 2012, 22, 5065. doi: 10.1039/c2jm14787d

    24. [24]

      (24) Rakap, M.; Özkar, S. Int. J. Hydrog. Energy 2010, 35, 3341. doi: 10.1016/j.ijhydene.2010.01.138

    25. [25]

      (25) Metin, Ö.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1424.

    26. [26]

      (26) Yao, Q. L.; Shi,W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. J. Power Sources 2014, 257, 293. doi: 10.1016/j.jpowsour.2014.01.122

    27. [27]

      (27) Yang, Y.W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi,W. M.; Chen, X. S.;Wang, T. T. RSC Advances 2014, 4, 13749. doi: 10.1039/c3ra47023g

    28. [28]

      (28) Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190. doi: 10.1016/j.jpowsour.2005.05.043

    29. [29]

      (29) Rakap, M.; Kalu, E. E.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1448. doi: 10.1016/j.ijhydene.2010.10.097

    30. [30]

      (30) Eom, K. S.; Cho, K.W.; Kwon, H. S. Int. J. Hydrog. Energy 2010, 35, 181.

    31. [31]

      (31) Garaj, S.; Hubbard,W.; Reina, A.; Kong, J.; Branton, D.; lovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379

    32. [32]

      (32) Lee, C.;Wei, X. D.; Kysar, J.W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996

    33. [33]

      (33) Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong,W. H.; Hammond, P. T.; Park, H. S. ACS Nano 2011, 5, 5167. doi: 10.1021/nn2013113

    34. [34]

      (34) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812

    35. [35]

      (35) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. - Chim. Sin. 2012, 28 (11), 2754. [李松梅, 王博, 刘建华, 于美, 安军伟. 物理化学学报, 2012, 28 (11), 2754.] doi: 10.3866/PKU.WHXB201208292

    36. [36]

      (36) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4),858.] doi: 10.3866/PKU.WHXB20110411

    37. [37]

      (37) Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Angew Chem. Int. Edit. 2010, 49, 9368. doi: 10.1002/anie.201003903

    38. [38]

      (38) Vinod pal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. J. Am. Chem. Soc. 2010, 1, 1987.

    39. [39]

      (39) Liu, C. B.;Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Small 2011, 7, 1203. doi: 10.1002/smll.v7.9

    40. [40]

      (40) Cao, N.; Su, J.; Luo,W.; Cheng, G. Z. Int. J. Hydrog. Energy 2014, 39, 426. doi: 10.1016/j.ijhydene.2013.10.059

    41. [41]

      (41) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. doi: 10.1021/cr010350j

    42. [42]

      (42) Yang, L.; Cao, N.; Du, C.; Dai, H. M.; Hu, K.; Luo,W.; Cheng, G. Z. Materials Letters 2014, 115, 113. doi: 10.1016/j.matlet.2013.10.039

    43. [43]

      (43) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew Chem. Int. Edit. 2005, 44, 7852.

    44. [44]

      (44) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017

    45. [45]

      (45) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; rchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u

    46. [46]

      (46) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757


  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    3. [3]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Xinyue Zhang Yifeng Ding Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(729)
  • Abstract views(821)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return