Citation: YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1180-1186. doi: 10.3866/PKU.WHXB201404141
-
Cobalt nanoparticles (NPs) supported on reduced graphene oxide (R ) were synthesized by a one-step in situ co-reduction of an aqueous solution of cobalt(Ⅱ) chloride and graphene oxide ( ) using ammonia borane (AB) as the sole reductant under ambient conditions. The as-synthesized Co/R catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of AB at room temperature. The assynthesized Co/R nanocatalysts exhibited much higher catalytic activity than the R -free Co counterpart. Compared with the nanocatalysts reduced by NaBH4, the Co/R nanocatalysts generated by the milder reductant AB exhibited superior catalytic activity. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co/R has zero order kinetics with respect to the substrate concentration. The hydrolysis activation energy is estimated to be about 27.10 kJ·mol-1, which is lower than most reported data for the same reaction conusing non-noble metal catalysts and some noble metal containing catalysts. Furthermore, the R -supported Co NPs show od recyclability and magnetic reusability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to the facile preparation of other R -based metallic systems.
-
-
[1]
(1) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634
-
[2]
(2) Grochala,W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283. doi: 10.1021/cr030691s
-
[3]
(3) Graetz, J. Chem. Soc. Rev. 2009, 38, 73. doi: 10.1039/b718842k
-
[4]
(4) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.W. Chem. Rev. 2012, 112, 782. doi: 10.1021/cr200274s
-
[5]
(5) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079. doi: 10.1021/cr100088b
-
[6]
(6) Chen, P.; Zhu, M. Mater. Today 2008, 11, 36.
-
[7]
(7) Lu, Z. H.; Xu, Q. Funct. Mater. Lett. 2012, 5, 1230001. doi: 10.1142/S1793604712300010
-
[8]
(8) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698. doi: 10.1039/c2ee22937d
-
[9]
(9) Lu, Z. H.; Yao, Q. L.; Zhang, Z. J.; Yang, Y.W.; Chen, X. S. J. Nanomater. 2014, 729029.
-
[10]
(10) Rakap, M.; Kalu, E. E.; Özkar, S. J. Power Sources 2012, 210, 184. doi: 10.1016/j.jpowsour.2012.03.025
-
[11]
(11) Yan, J. M.;Wang, Z. L.;Wang, H. L.; Jiang, Q. J. Mater. Chem. 2012, 22, 10990. doi: 10.1039/c2jm31042b
-
[12]
(12) Yang, Y.W.; Zhang, F.;Wang, H. L.; Yao, Q. L.; Chen, X. S.; Lu, Z. H. J. Nanomater. 2014, 294530.
-
[13]
(13) Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Inorg. Chem. 2007, 46, 788. doi: 10.1021/ic061712e
-
[14]
(14) Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass,W. N.; re, J. P. J. Power Sources 2009, 188, 238. doi: 10.1016/j.jpowsour.2008.11.085
-
[15]
(15) Du, Y. S.; Cao, N.; Yang, L.; Luo,W.; Cheng, G. Z. New J. Chem. 2013, 37, 3035. doi: 10.1039/c3nj00552f
-
[16]
(16) Xi, P. X.; Chen, F. J.; Xie, G. Q.; Ma, C.; Liu, H.Y.; Shao, C. W.;Wang, J.; Xu, Z. H.; Xu, X. M.; Zeng, Z. Z. Nanoscale 2012, 4, 5597. doi: 10.1039/c2nr31010d
-
[17]
(17) Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135. doi: 10.1016/j.jpowsour.2007.03.015
-
[18]
(18) Yang, L.; Luo,W.; Cheng, G. E. ACS Appl. Mater. Interfaces 2013, 5, 8231. doi: 10.1021/am402373p
-
[19]
(19) Rachiero, G. P.; Demirci, U. B.; Miele, P. Int. J. Hydrog. Energy 2011, 36, 7051. doi: 10.1016/j.ijhydene.2011.03.009
-
[20]
(20) Simagia, V. I.; Komova, O. V.; Ozerova, A. M.; Netskina, O. V.; Ode va, G. V.; Kelleman, D. G.; Bulavcheoko, O. V.; Ishchenko, A. V. Appl. Catal. A: Gen. 2011, 384, 86.
-
[21]
(21) Yan, L.; Su, J.; Meng, X. Y.; Luo,W.; Cheng, G. Z. J. Mater. Chem. A 2013, 1, 10016. doi: 10.1039/c3ta11835e
-
[22]
(22) Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang,W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. S. Int. J. Hydrog. Energy 2013, 38, 5330. doi: 10.1016/j.ijhydene.2013.02.076
-
[23]
(23) Lu, Z. H.; Jiang, H. L.; Yadav, M.; Aranishi, K.; Xu, Q. J. Mater. Chem. 2012, 22, 5065. doi: 10.1039/c2jm14787d
-
[24]
(24) Rakap, M.; Özkar, S. Int. J. Hydrog. Energy 2010, 35, 3341. doi: 10.1016/j.ijhydene.2010.01.138
-
[25]
(25) Metin, Ö.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1424.
-
[26]
(26) Yao, Q. L.; Shi,W. M.; Feng, G.; Lu, Z. H.; Zhang, X. L.; Tao, D. J.; Kong, D. J.; Chen, X. S. J. Power Sources 2014, 257, 293. doi: 10.1016/j.jpowsour.2014.01.122
-
[27]
(27) Yang, Y.W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi,W. M.; Chen, X. S.;Wang, T. T. RSC Advances 2014, 4, 13749. doi: 10.1039/c3ra47023g
-
[28]
(28) Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190. doi: 10.1016/j.jpowsour.2005.05.043
-
[29]
(29) Rakap, M.; Kalu, E. E.; Özkar, S. Int. J. Hydrog. Energy 2011, 36, 1448. doi: 10.1016/j.ijhydene.2010.10.097
-
[30]
(30) Eom, K. S.; Cho, K.W.; Kwon, H. S. Int. J. Hydrog. Energy 2010, 35, 181.
-
[31]
(31) Garaj, S.; Hubbard,W.; Reina, A.; Kong, J.; Branton, D.; lovchenko, J. A. Nature 2010, 467, 190. doi: 10.1038/nature09379
-
[32]
(32) Lee, C.;Wei, X. D.; Kysar, J.W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
-
[33]
(33) Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong,W. H.; Hammond, P. T.; Park, H. S. ACS Nano 2011, 5, 5167. doi: 10.1021/nn2013113
-
[34]
(34) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
-
[35]
(35) Li, S. M.;Wang, B.; Liu, J. H.; Yu, M.; An, J.W. Acta Phys. - Chim. Sin. 2012, 28 (11), 2754. [李松梅, 王博, 刘建华, 于美, 安军伟. 物理化学学报, 2012, 28 (11), 2754.] doi: 10.3866/PKU.WHXB201208292
-
[36]
(36) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27 (4), 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27 (4),858.] doi: 10.3866/PKU.WHXB20110411
-
[37]
(37) Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Angew Chem. Int. Edit. 2010, 49, 9368. doi: 10.1002/anie.201003903
-
[38]
(38) Vinod pal, K.; Neppolian, B.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Kamat, P. V. J. Am. Chem. Soc. 2010, 1, 1987.
-
[39]
(39) Liu, C. B.;Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Small 2011, 7, 1203. doi: 10.1002/smll.v7.9
-
[40]
(40) Cao, N.; Su, J.; Luo,W.; Cheng, G. Z. Int. J. Hydrog. Energy 2014, 39, 426. doi: 10.1016/j.ijhydene.2013.10.059
-
[41]
(41) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. doi: 10.1021/cr010350j
-
[42]
(42) Yang, L.; Cao, N.; Du, C.; Dai, H. M.; Hu, K.; Luo,W.; Cheng, G. Z. Materials Letters 2014, 115, 113. doi: 10.1016/j.matlet.2013.10.039
-
[43]
(43) Astruc, D.; Lu, F.; Aranzaes, J. R. Angew Chem. Int. Edit. 2005, 44, 7852.
-
[44]
(44) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
-
[45]
(45) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; rchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u
-
[46]
(46) Chen, H. Q.; Müller, M. B.; Gilmore, K. J.;Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557. doi: 10.1002/adma.200800757
-
[1]
-
-
[1]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[2]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[3]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[4]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[7]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[12]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[13]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[15]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[16]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[17]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[18]
Xinyue Zhang , Yifeng Ding , Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093
-
[19]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[20]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[1]
Metrics
- PDF Downloads(729)
- Abstract views(821)
- HTML views(21)