Citation: YIN Hai-Feng, ZHANG Hong, YUE Li. Near-Infrared Plasmon Study on N-Doped Hexa nal Graphene Nanostructures[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1049-1054. doi: 10.3866/PKU.WHXB201404092 shu

Near-Infrared Plasmon Study on N-Doped Hexa nal Graphene Nanostructures

  • Received Date: 15 January 2014
    Available Online: 9 April 2014

    Fund Project:

  • Near-infrared plasmons in N-doped hexa nal graphene nanostructures were investigated using time-dependent density functional theory. Along a certain direction, N-doped hexa nal graphene nanostructures with a side length of 1 nm have more intense plasmon resonances throughout the nearinfrared spectral region. The electrons that participate in these near-infrared plasmon resonances oscillate back and forth between the center and edge regions of the hexa nal nanostructures. The formation of a near-infrared plasmon resonance mode depends on the nitrogen-doping position and the scale size of the graphene nanostructure. It is only when the nitrogen-doped location is close to the edge of the nanostructures, near-infrared plasmon resonance mode of the graphene nanostructure will be formed. For N-doped hexa nal graphene nanostructures with a side length of less than 1 nm, there is no plasmon resonance in the nearinfrared spectral region.

  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896

    2. [2]

      (2) Chen, S.;Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A. A.; Ruoff, R. S. Nature Materials 2012, 11, 203. doi: 10.1038/nmat3207

    3. [3]

      (3) Zou, H.; Ni, X.; Peng, S. L.; Ouyang, J.; Chen, Y.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2013, 29, 250. [邹辉, 倪祥, 彭盛霖, 欧阳俊, 陈羽, 欧阳方平. 物理化学学报, 2013, 29,250.] doi: 10.3866/PKU.WHXB201211141

    4. [4]

      (4) Gri renko, A. N.; Polini, M.; Novoselov, K. S. Nature Photonics 2012, 6, 749. doi: 10.1038/nphoton.2012.262

    5. [5]

      (5) Javier Garcia de Abajo, F. Science 2013, 339, 917. doi: 10.1126/science.1231119

    6. [6]

      (6) Halas, N. J.; Lal, S.; Chang,W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913. doi: 10.1021/cr200061k

    7. [7]

      (7) Tong, L. M.; Xu, H. X. Front. Phys. 2014, 9, 1. doi: 10.1007/s11467-013-0399-4

    8. [8]

      (8) Bostwick, A.; Speck, F.; Seyller, T.; Horn, K.; Polini, M.; Asgari, R.; MacDonald, A. H.; Rotenberg, E. Science 2010, 328, 999. doi: 10.1126/science.1186489

    9. [9]

      (9) Schiros, T.; Nordlund, D.; Pálova, L.; Prezzi, D.; Zhao, L.; Kim, K. S.;Wurstbauer, U.; Gutiérrez, C.; Delongchamp, D.; Jaye, C.; Fischer, D.; Ogasawara, H.; Pettersson, L. G. M.; Reichman, D. R.; Kim, P.; Hybertsen, M. S.; Pasupathy, A. N. Nano Lett. 2012, 12, 3766. doi: 10.1021/nl3016335

    10. [10]

      (10) Zhao, L.; He, R.; Rim, K. T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L.; Nordlund, D.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F.; Kim, P.; Pinczuk, A.; Flynn, G.W.; Pasupathy, A. N. Science 2011, 333, 999. doi: 10.1126/science.1208759

    11. [11]

      (11) Gao, H.; Song, L.; Guo,W.; Huang, L.; Yang, D.;Wang, F.; Zuo, Y.; Fan, X.; Liu, Z.; Gao,W.; Vajtai, R.; Hackenberg, K.; Ajayan, P. M. Carbon 2012, 50, 4476. doi: 10.1016/j.carbon.2012.05.026

    12. [12]

      (12) Li, M.;Wu,W.; Ren,W.; Cheng, H. M.; Tang, N.; Zhong,W.; Du, Y. Appl. Phys. Lett. 2012, 101, 103107. doi: 10.1063/1.4750065

    13. [13]

      (13) Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; ng, J. R. Nano Lett. 2010, 10, 4975. doi: 10.1021/nl103079j

    14. [14]

      (14) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221

    15. [15]

      (15) Xiang, H. J.; Huang, B.; Li, Z. Y.;Wei, S. H.; Yang, J. L.; ng, X. G. Phys. Rev. X 2012, 2, 011003.

    16. [16]

      (16) Hou, Z.;Wang, X.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M.; Miyata, S. Phys. Rev. B 2012, 85, 165439. doi: 10.1103/PhysRevB.85.165439

    17. [17]

      (17) Ritter, K. A.; Lyding, J.W. Nature Materials 2009, 8, 235. doi: 10.1038/nmat2378

    18. [18]

      (18) Thongrattanasiri, S.; Manjavacas, A.; Javier García de Abajo, F. ACS Nano 2012, 6,1766. doi: 10.1021/nn204780e

    19. [19]

      (19) Yin, H. F.; Zhang, H. J. Appl. Phys. 2012, 111, 103502. doi: 10.1063/1.4706566

    20. [20]

      (20) Yan, X.; Cui, X.; Li, B.; Li, L. S. Nano Lett. 2010, 10, 1869. doi: 10.1021/nl101060h

    21. [21]

      (21) Yan, X.; Cui, X.; Li, L. S. J. Am. Chem. Soc. 2010, 132, 5944. doi: 10.1021/ja1009376

    22. [22]

      (22) Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. J. Am. Chem. Soc. 2012, 134, 15. doi: 10.1021/ja206030c

    23. [23]

      (23) Liu, Q.; Guo, B. D.; Rao, Z.; Zhang, B. H.; ng, J. R. Nano Lett. 2013, 13, 2436. doi: 10.1021/nl400368v

    24. [24]

      (24) Brar, V.W.; Jang, M.; Sherrott, M.; Lopez, J. J.; Atwater, H. A. Nano Lett. 2013, 13, 2541. doi: 10.1021/nl400601c

    25. [25]

      (25) Robinson, T. J.; Tabakman, S. M.; Liang, Y.;Wang, H.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175

    26. [26]

      (26) Fang, Z. Y.;Wang, Y. M.; Schlather, A. E.; Liu, Z.; Ajayan, P. M.; Javier García de Abajo, F.; Nordlander, P.; Zhu, X.; Halas, N. J. Nano Lett. 2014, 14, 299. doi: 10.1021/nl404042h

    27. [27]

      (27) Marques, M. A. L.; Castro, A.; Bertsch, G. F.; Rubio, A. Comput. Phys. Commun. 2003, 151, 60. doi: 10.1016/S0010-4655(02)00686-0

    28. [28]

      (28) Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993

    29. [29]

      (29) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566. doi: 10.1103/PhysRevLett.45.566

    30. [30]

      (30) Rubio, A.; Alonso, J. A.; Lopez, J. M.; Stott, M. J. Physica B 1993, 183, 247. doi: 10.1016/0921-4526(93)90035-5

    31. [31]

      (31) Marinopoulos, A. G.; Reining, L.; Olevano, V.; Rubio, A. Phys. Rev. Lett. 2002, 89, 076402. doi: 10.1103/PhysRevLett.89.076402

    32. [32]

      (32) Marinopoulos, A. G.; Reining, L.; Rubio, A.; Vast, N. Phys. Rev. Lett. 2003, 91, 046402. doi: 10.1103/PhysRevLett.91.046402

    33. [33]

      (33) Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Phys. Rev. B 2008, 77, 233406. doi: 10.1103/PhysRevB.77.233406

    34. [34]

      (34) Kim, S.; Hwang, S.W.; Kim, M. K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S. H.; Ko, G.; Sim, S.; Sone, C.; Choi, H. J.; Bae, S.; Hong, B. H. ACS Nano 2012, 6, 8203. doi: 10.1021/nn302878r

    35. [35]

      (35) Mishchenko, E. G.; Shytov, A. V.; Silvestrov, P. G. Phys. Rev. Lett. 2010, 104, 156806. doi: 10.1103/PhysRevLett.104.156806


  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(600)
  • Abstract views(777)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return