Citation: XU Qiong, ZHANG Tian-Lei, Lü Wen-Bin, WANG Rui, WANG Zhi-Yin, WANG Wen-Liang, WANG Zhu-Qing. Theoretical Study on the effect of a Single Water Molecule on the H2O2+Cl Gas Reaction[J]. Acta Physico-Chimica Sinica, ;2014, 30(6): 1061-1070. doi: 10.3866/PKU.WHXB201404032
-
The reaction mechanism and rate constant of the H2O2+Cl reaction, with and without a single water molecule, was investigated theoretically at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. The calculated results show that there is only one channel for the formation of HO2+HCl in the naked H2O2+Cl reaction with an apparent activation energy of 10.21 kJ·mol-1. When one water molecule is added, the product of the reaction does not change, but the potential energy surface of the reaction becomes complex, yielding three different channels RW1, RW2, and RW3. The single water molecule in the RW1 and RW2 reaction channels has a negative influence on reducing the reaction barrier for the formation of HO2+HCl, whereas it has a positive influence in Channel RW3. Additionally, to estimate the importance of these processes in the atmosphere, their rate constants were evaluated using conventional transition state theory with the Wigner tunneling correction. The result shows that the rate constant for the naked H2O2+Cl reaction is 1.60×10-13 cm3 ·molecule-1 ·s-1 at 298.2 K, which is in od agreement with experimental values. Although the rate constant of channel RW3 is predicted to be 46.6-131 times larger than that of the naked H2O2+Cl reaction, its effective rate constant is smaller by 10-14 orders of magnitude than that of the naked reaction, that is, for the H2O2 + Cl reaction the naked reaction almost exclusively occurs under tropospheric conditions.
-
Keywords:
-
H2O2
, - Cl,
- Water-catalyzed,
- Reaction mechanism,
- Rate constant
-
-
-
[1]
(1) Marcy, T. P.; Fahey, D.W.; Gao, R. S.; Popp, P. J.; Richard, E. C.; Thompson, T. L.; Rosenlof, K. H.; Ray, E. A.; Salawitch, R. J.; Atherton, C. S.; Bergmann, D. J.; Ridley, B. A.;Weinheimer, A. J.; Loewenstein, M.;Weinstock, E. M.; Mahoney, M. J. Science 2004, 304 (5668), 261. doi: 10.1126/science.1093418
-
[2]
(2) Leu, M. T.; Demore,W. B. Chem. Phys. Lett. 1976, 41 (1), 121. doi: 10.1016/0009-2614(76)85261-X
-
[3]
(3) Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne,W. A.; Stief, L. J. J. Chem. Phys. 1977, 67 (8), 3533. doi: 10.1063/1.435351
-
[4]
(4) Keyser, L. F. J. Phys. Chem. 1980, 84 (1), 11. doi: 10.1021/j100438a004
-
[5]
(5) Poulet, G.; Le Bras, G.; Combourieu, J. J. Chem. Phys. 1978, 69 (2), 767.
-
[6]
(6) Marouani, S.; Koussa, H.; Bahri, M.; Hochlaf, M.; Batis, H. J. Mol. Struct. -Theochem 2009, 905 (1-3), 70. doi: 10.1016/j.theochem.2009.03.011
-
[7]
(7) Buszek, R. J.; Francisco, J. S.; Anglada, J. M. Int. Rev. Phys. Chem. 2011, 30 (3), 335. doi: 10.1080/0144235X.2011.634128
-
[8]
(8) Frost, G.; Vaida, V. J. Geophys. Res. 1995, 100 (D9), 18803. doi: 10.1029/95JD01940
-
[9]
(9) Tao, F. M. H.; K. Klemperer,W.; Nelson, D. D. Geophys Res. Lett. 1996, 23 (14), 1797. doi: 10.1029/96GL00947
-
[10]
(10) Aloisio, S.; Francisco, J. S. J. Phys. Chem. A. 1998, 102 (11), 1899. doi: 10.1021/jp972173p
-
[11]
(11) Long, B.; Tan, X. F.; Long, Z.W.;Wang, Y. B.; Ren, D. S.; Zhang,W. J. J. Phys. Chem. A 2011, 115 (24), 6559. doi: 10.1021/jp200729q
-
[12]
(12) Zhang, T. L.;Wang,W. L.; Zhang, P.; Lu, J.; Zhang, Y. Phys. Chem. Chem. Phys. 2011, 13 (46), 20794.
-
[13]
(13) Zhang, T. L.; Li, G. N.;Wang,W. L.; Du, Y. M.; Li, C. Y.; Lu, J. Comput. Theor. Chem. 2012, 991, 13.
-
[14]
(14) Stone, D.; Rowley, D. M. Phys. Chem. Chem. Phys. 2005, 7 (10), 2156. doi: 10.1039/b502673c
-
[15]
(15) nzalez, J.; Anglada, J. M. J. Phys. Chem. A 2010, 114 (34), 9151. doi: 10.1021/jp102935d
-
[16]
(16) Ryzhkov, A. B.; Ariya, P. A. Phys. Chem. Chem. Phys. 2004, 6 (21), 5042. doi: 10.1039/b408414d
-
[17]
(17) Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Science 2007, 315 (5811), 497. doi: 10.1126/science.1134494
-
[18]
(18) Anglada, J. M.; nzalez, J. ChemPhysChem 2009, 10 (17), 3034. doi: 10.1002/cphc.200900387
-
[19]
(19) Luo, Y. M.; S. Ohno, K. Chem. Phys. Lett. 2009, 469 (1-3), 57. doi: 10.1016/j.cplett.2008.12.087
-
[20]
(20) Vohringer-Martinez, E.; Tellbach, E.; Liessmann, M.; Abel, B. J. Phys. Chem. A 2010, 114 (36), 9720. doi: 10.1021/jp101804j
-
[21]
(21) Yung, Y. L.; DeMore,W. B.; Yuk, L. Y.; DeMore,W. B., Photochemistry of Planetory Atmospheres; Oxford University Press: New York, 1999; Vol. 1.
-
[22]
(22) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90 (4), 2154.
-
[23]
(23) Raghavachari, K.; Trucks, G.W.; Pople, J. A.; Head rdon, M. Chem. Phys. Lett. 1989, 157 (6), 479. doi: 10.1016/S0009-2614(89)87395-6
-
[24]
(24) Frisch, M. J.; Trucks, G.W.; Pople, J. A.; et al . Gaussian 09, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2009.
-
[25]
(25) Zhang, S.W.; Truong, N. T. VKLab, version 1.0; University of Utah: Salt Lake City, 2001.
-
[26]
(26) Lu, Y. X.;Wang,W. L.;Wang,W. N.; Liu, Y. Y.; Zhang, Y. Acta Chim. Sin. 2010, 68 (13), 1253. [卢彦霞, 王文亮, 王渭娜, 刘英英, 张越. 化学学报, 2010, 68 (13), 1253.]
-
[27]
(27) Si,W. J.; Zhuo, S. P.; Ju, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 974. [司维江, 禚淑萍, 居冠之. 物理化学学报, 2003, 19 (10), 974.] doi: 10.3866/PKU.WHXB20031019
-
[28]
(28) From the NIST ChemistryWebbook, http://webbook.nist. v/chemistry.
-
[29]
(29) Lee, T. J.; Taylor, P. R. Int. J. Quantum. Chem. 1989, 36 (S23) 199.
-
[30]
(30) Garrett, B. C.; Truhlar, D. G. J. Chem. Phys. 1979, 70 (4), 1593. doi: 10.1063/1.437698
-
[31]
(31) Hammond, G. S. J. Am. Chem. Soc. 1955, 77 (2), 334. doi: 10.1021/ja01607a027
-
[32]
(32) Zhao, Y. G.; Zhou, X. G.; Yu, F.; Dai, J. H.; Liu, S. L. Acta Phys. -Chim. Sin. 2006, 22 (9), 1095. [赵英国, 周晓国, 于锋, 戴静华, 刘世林. 物理化学学报, 2006, 22 (9), 1095.] doi: 10.1016/S1872-1508(06)60050-8
-
[33]
(33) Anglada, J. M.; Domin , V. M. J. Phys. Chem. A 2005, 109 (47), 10786. doi: 10.1021/jp054018d
-
[34]
(34) Zhang,W. C. D.; Du, B. N. J. Mol. Struct. -Theochem 2006, 760 (1-3), 131. doi: 10.1016/j.theochem.2005.12.004
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[7]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[8]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[9]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[10]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[11]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[12]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[13]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[17]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[18]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[19]
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
-
[20]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[1]
Metrics
- PDF Downloads(574)
- Abstract views(834)
- HTML views(18)