Citation: FENG Hai-Ran, LI Peng, ZHENG Yu-Jun, WANG De-Hua. Influences of Molecular Rotations and Laser Pulses on Controlling Multiphoton Excitation[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 836-844. doi: 10.3866/PKU.WHXB201403262 shu

Influences of Molecular Rotations and Laser Pulses on Controlling Multiphoton Excitation

  • Received Date: 30 December 2013
    Available Online: 26 March 2014

    Fund Project:

  • The influence of molecular rotation, laser pulse shape and initial phase on controlling the infrared multiphoton excitation of diatomic molecules has been studied using an analytical algebraic approach, which involved the derivation of analytic transition probabilities with various rotational channels. To observe the correctional functions of the rotational energy and the relationship between the molecular orientation and the polarized direction of the laser field in terms of their impact on controlling multiphoton excitation, we calculated the probabilities in the purely vibrational and ro-vibrational cases. The maximumtransition probabilities were determined as a function of the time and molecular orientation angle in both cases for comparison, which allowed for the target multiphoton excitations to be achieved. However, oscillations appeared in the population of the ro-vibrational case which denoted rotational interference can decrease the selectivity of the molecular vibrational excitation. Furthermore, the rotational energy had a corrected action on multiphoton non-resonant excitation and the power of actions was dependent on the molecular anharmonicity. We have also provided a discussion of the influences of laser pulse shape and initial phase. We found that the use of an appropriate laser pluse shape afforded the target multiphoton excitation event, and that the initial phase of the chirped laser pulse had an obvious modulatory function on the multiphoton processes.

  • 加载中
    1. [1]

      (1) Kumarappan, V.; Holmegaard, L.; Martiny, C.; Madsen, C. B.; Kjeldsen, T. K.; Viftrup, S. S.; Madsen, L. B.; Stapelfeldt, H. Phys. Rev. Lett. 2008, 100, 093006. doi: 10.1103/PhysRevLett.100.093006

    2. [2]

      (2) Chu, X. Phys. Rev. A 2008, 78, 043408. doi: 10.1103/PhysRevA.78.043408

    3. [3]

      (3) Dimitrious, K. I.; Constantoudis, V.; Komninos, T.; Komninos, Y.; Nicolaides, C. A. Phys. Rev. A 2007, 76, 033406. doi: 10.1103/PhysRevA.76.033406

    4. [4]

      (4) Ramakrishna, S.; Seideman, T. Phys. Rev. Lett. 2007, 99, 113901. doi: 10.1103/PhysRevLett.99.113901

    5. [5]

      (5) Nakajima, K.; Abe, H.; Ohtsuki, Y. J. Phy. Chem. A 2012, 116, 11219. doi: 10.1021/jp3052054

    6. [6]

      (6) Kharin, V. Y.; Popov, A. M.; Ikhonova, T. V. Laser Physics 2012, 22, 1693. doi: 10.1134/S1054660X12110060

    7. [7]

      (7) Chu, X.; Groenenboom, G. C. Phys. Rev. A 2013, 87, 013434. doi: 10.1103/PhysRevA.87.013434

    8. [8]

      (8) Liu, B. K.; Wang, Y. Q.; Wang, L. Acta Phys. -Chim. Sin. 2010, 26, 3157. [刘本康, 王艳秋, 王利. 物理化学学报, 2010, 26, 3157.] doi: 10.3866/PKU.WHXB20101220

    9. [9]

      (9) Iachello, F. Chem. Phys. Lett. 1981, 78, 581. doi: 10.1016/0009-2614(81)85262-1

    10. [10]

      (10) Van Roosmalen, O. S.; Benjamin, I.; Levine, R. D. J. Chem. Phys. 1984, 81, 5986. doi: 10.1063/1.447600

    11. [11]

      (11) Benjamin, I.; Levine, R. D.; Kinsey, J. L. J. Phys. Chem. 1983, 87, 727. doi: 10.1021/j100228a005

    12. [12]

      (12) Zheng, Y. J.; Ding, S. L. J. Chem. Phys. 1999, 111, 4466. doi: 10.1063/1.479210

    13. [13]

      (13) Zheng, Y. J.; Ding, S. L. Phys. Rev. A 2001, 64, 032720. doi: 10.1103/PhysRevA.64.032720

    14. [14]

      (14) Zheng, Y. J.; Ding, S. L. Phys. Lett. A 1999, 256, 197. doi: 10.1016/S0375-9601(99)00207-8

    15. [15]

      (15) Qu, S. S.; Sun, W. G.; Wang, Y. J.; Fan, Q. C. Acta Phys. -Chim. Sin. 2009, 25, 13. [渠双双, 孙卫国, 王宇杰, 樊群超. 物理化学学报, 2009, 25, 13.] doi: 10.3866/PKU.WHXB20090103

    16. [16]

      (16) Feng, H. R.; Ding, S. L. J. Phys. B 2007, 40, 69. doi: 10.1088/0953-4075/40/1/007

    17. [17]

      (17) Feng, H. R.; Liu, Y.; Zheng, Y. J.; Ding, S. L.; Ren, W. Y. Phys. Rev. A 2007, 75, 063417. doi: 10.1103/PhysRevA.75.063417

    18. [18]

      (18) Feng, H. R.; Cheng, J.; Yue, X. F.; Zheng, Y. J.; Ding, S. L. Chin. Phys. Lett. 2011, 28, 073301. doi: 10.1088/0256-307X/28/7/073301

    19. [19]

      (19) Levine, R. D. Chem. Phys. Lett. 1983, 95, 87. doi: 10.1016/0009-2614(83)85071-4

    20. [20]

      (20) Levine, R. D. Intramolecular Dynamic, 1st ed.; Reidel: Dordrecht, 1982.

    21. [21]

      (21) Cooper, I. L.; Gupta, R. K. Phys. Rev. A 1997, 55, 4112. doi: 10.1103/PhysRevA.55.4112

    22. [22]

      (22) Cooper, I. L. J. Phys. Chem. A 1998, 102, 9565. doi: 10.1021/jp982149r

    23. [23]

      (23) Rau, A. R. P.; Zhao, W. C. Phys. Rev. A 2005, 71, 063822. doi: 10.1103/PhysRevA.71.063822

    24. [24]

      (24) Alhassid, Y.; Levine, R. D. Phys. Rev. A 1978, 18, 89. doi: 10.1103/PhysRevA.18.89

    25. [25]

      (25) Wei, J.; Norman, E. Proc. Am. Math. Soc. 1964, 15, 327. doi: 10.1090/S0002-9939-1964-0160009-0

    26. [26]

      (26) Korolkov, M. V.; Paramonov, G. K. Phys. Rev. A 1997, 56, 3860. doi: 10.1103/PhysRevA.56.3860

    27. [27]

      (27) Stranges, S.; Rithcer, R.; Alagia, M. J. Chem. Phys. 2002, 116, 3676. doi: 10.1063/1.1448283

    28. [28]

      (28) Amstrup, B.; Henriksen, N. E. J. Chem. Phys. 1992, 97, 8285. doi: 10.1063/1.463399

    29. [29]

      (29) Elghobashi, N.; Krause, P.; Manz, J.; Oppel, M. Phys. Chem. Chem. Phys. 2003, 5, 4806. doi: 10.1039/b305305a

    30. [30]

      (30) Herzberg, G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 1st ed.; D. Van Mostrand Company, Inc.: Princeton, 1950; pp 560, 106.

    31. [31]

      (31) Jakubetz, W.; Just, B.; Manz, J.; Schreier, H. J. J. Phys. Chem. 1990, 94, 2294. doi: 10.1021/j100369a019

    32. [32]

      (32) Dai, Y.; Ding, S. L. Int. J. Quantum Chem. 1999, 71, 201. doi: 10.1002/(SICI)1097-461X(1999)71:2< 201::AID-QUA9> 3.0.CO; 2-A

    33. [33]

      (33) Broeckhove, J.; Feyen, B.; Van Leuven, P. Int. J. Quantum Chem. 1994, 52, 173. doi: 10.1002/qua.560520818

    34. [34]

      (34) Geng, Z. H.; Dai, Y.; Ding, S. L. Chem. Phys. 2002, 278, 119. doi: 10.1016/S0301-0104(02)00404-4

    35. [35]

      (35) Walker, R. B.; Preston, R. K. J. Chem. Phys. 1977, 67, 2017. doi: 10.1063/1.435085

    36. [36]

      (36) Chang, J.; Wyatt, R. E. J. Chem. Phys. 1986, 85, 1840. doi: 10.1063/1.451185

    37. [37]

      (37) Bartels, R. A.; Weinacht, T. C.; Wagner, N.; Baertschy, M.; Greene, C. H.; Murnane, M. M.; Kapteyn, H. C. Phys. Rev. Lett. 2001, 88, 013903. doi: 10.1103/PhysRevLett.88.013903

    38. [38]

      (38) Comstock, M.; Lozovoy, V. V.; Dantus, M. Chem. Phys. Lett. 2003, 372, 739. doi: 10.1016/S0009-2614(03)00489-5

    39. [39]

      (39) Diels, J. C.; Rudolph, W. Ultrashort Laser Pulse Phenomena, 2nd ed.; Academic Press: Burlington, 2006; pp 44-46.

    40. [40]

      (40) Boyd, R. W. Nonlinear Optics, 3rd ed.; Academic Press: Burlington, 2008; pp 69-122.


  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    3. [3]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    4. [4]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    7. [7]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    8. [8]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    19. [19]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(432)
  • Abstract views(679)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return