Citation: JIANG Feng, REN Qing-Hua. Reaction Mechanism for the Ni-Catalyzed Reductive Cross-Coupling of Aryl Halides[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 821-828. doi: 10.3866/PKU.WHXB201403241 shu

Reaction Mechanism for the Ni-Catalyzed Reductive Cross-Coupling of Aryl Halides

  • Received Date: 10 December 2013
    Available Online: 24 March 2014

    Fund Project:

  • The mechanism of the Ni-catalyzed reductive cross-coupling reaction of bromobenzene (R1) and methyl 4-bromobenzoate (R2) to form an unsymmetrical biaryl system has been theoretically investigated using density functional theory calculations. Our results showed that the Ni0-catalyzed process was favored over the NiI-catalyzed mechanism. The mechanism for the reaction of the Ni0 catalyst initially attacking either R1 or R2 was quite similar, where the energy barrier in the gas phase for the rate-limiting step was 70.50 or 49.66 kJ·mol-1, respectively. The mechanism in the favored Ni0-catalyzed reaction involved the following steps: first oxidative addition, reduction, second oxidative addition, reductive elimination, and catalyst regeneration. Our calculated results also indicated that no organometallic reagents were produced in the reaction cycle.

  • 加载中
    1. [1]

      (1) Torssell, K. B. Natural Product Chemistry: a Mechanistic and Biosynthetic Approach to Secondary Metabolism; JohnWiley & Sons: New Jersey, 1983; pp 401-404.

    2. [2]

      (2) Bonesi, S. M.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Edit. 2008, 47, 10022. doi: 10.1002/anie.v47:52

    3. [3]

      (3) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651. doi: 10.1021/cr0505268

    4. [4]

      (4) Roncali, J. Chem. Rev. 1992, 92, 711. doi: 10.1021/cr00012a009

    5. [5]

      (5) Yang, W. Y.; Ahn, J. H.; Yoo, Y. S.; Oh, N. K.; Lee, M. Nat. Mater. 2005, 4, 399. doi: 10.1038/nmat1373

    6. [6]

      (6) Huang, Z.; Lee, H.; Lee, E.; Kang, S. K.; Nam, J. M.; Lee, M. Nat. Commun. 2011, 2, 459. doi: 10.1038/ncomms1465

    7. [7]

      (7) Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S.W. J. Med. Chem. 2000, 43, 3443. doi: 10.1021/jm000164q

    8. [8]

      (8) Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582. doi: 10.1021/jo9612990

    9. [9]

      (9) Blettner, C. G.; König, W. A.; Stenzel, W.; Schotten, T. J. Org. Chem. 1999, 64, 3885. doi: 10.1021/jo982135h

    10. [10]

      (10) Fagnoni, M.; Mella, M.; Albini, A. Org. Lett. 1999, 1, 1299. doi: 10.1021/ol990982g

    11. [11]

      (11) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Sasson, Y. J. Org. Chem. 2000, 65, 3107. doi: 10.1021/jo991868e

    12. [12]

      (12) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601. doi: 10.1016/S0040-4020(00)00929-7

    13. [13]

      (13) Hassan, J.; Sévignon, M.; zzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. doi: 10.1021/cr000664r

    14. [14]

      (14) Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org. Chem. 2006, 71, 1284. doi: 10.1021/jo052300a

    15. [15]

      (15) Dankwardt, J.W. Angew. Chem. Int. Edit. 2004, 116, 2482.

    16. [16]

      (16) Dankwardt, J.W. J. Organomet. Chem. 2005, 690, 932. doi: 10.1016/j.jorganchem.2004.10.037

    17. [17]

      (17) Catellani, M.; Motti, E.; Della Ca, N.; Ferraccioli, R. Eur. J. Org. Chem. 2007, 2007, 4153.

    18. [18]

      (18) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Edit. 2007, 119, 5455.

    19. [19]

      (19) Zhou, Z.; Liu, M.; Wu, X.; Yu, H.; Xu, G.; Xie, Y. Appl. Organomet. Chem. 2013, 27, 562.

    20. [20]

      (20) Breitenfeld, J.; Vechorkin, O.; Corminboeuf, C.; Scopelliti, R.; Hu, X. Organometallics 2010, 29, 3686. doi: 10.1021/om1007506

    21. [21]

      (21) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. doi: 10.1021/cr100327p

    22. [22]

      (22) Amatore, M.; smini, C. Angew. Chem. Int. Edit. 2008, 120, 2119.

    23. [23]

      (23) Qian, Q.; Zang, Z.; Wang, S.; Chen, Y.; Lin, K.; ng, H. Synlett 2013, 24, 619. doi: 10.1055/s-00000083

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03, Revision 01; Gaussian Inc.; Wallingford, CT, 2004.

    25. [25]

      (25) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    26. [26]

      (26) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    27. [27]

      (27) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    28. [28]

      (28) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001

    29. [29]

      (29) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi: 10.1063/1.438955

    30. [30]

      (30) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. doi: 10.1063/1.438980

    31. [31]

      (31) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. doi: 10.1007/BF01114537

    32. [32]

      (32) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189

    33. [33]

      (33) Lin, B. L.; Liu, L.; Fu, Y.; Luo, S.W.; Chen, Q.; Guo, Q. X. Organometallics 2004, 23, 2114. doi: 10.1021/om034067h

    34. [34]

      (34) Liu, Y.; Liu, J.W.; Yang, X. Z. Acta Phys. -Chim. Sin. 2002, 18, 1068. [刘跃, 刘佳雯, 杨小震. 物理化学学报, 2002, 18, 1068.] doi: 10.3866/PKU.WHXB20021203

    35. [35]

      (35) Li, Z.; Jiang, Y. Y.; Fu, Y. Chem. Eur. J. 2012, 18, 4345. doi: 10.1002/chem.v18.14

    36. [36]

      (36) Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73, 3680. doi: 10.1021/jo702497p

    37. [37]

      (37) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13, 1218. doi: 10.1021/ol200098d

    38. [38]

      (38) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319. doi: 10.1021/ja00515a028

    39. [39]

      (39) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1986, 108, 719. doi: 10.1021/ja00264a024

    40. [40]

      (40) Besora, M.; Carreón-Macedo, J. L.; Cimas, Á.; Harvey, J. N. Adv. Inorg. Chem. 2009, 61, 573. doi: 10.1016/S0898-8838(09)00210-4

    41. [41]

      (41) Phapale, V. B.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2009, 15, 12681. doi: 10.1002/chem.v15:46

    42. [42]

      (42) Moncomble, A.; Le Floch, P.; smini, C. Chem. Eur. J. 2009, 15, 4770. doi: 10.1002/chem.v15:19

    43. [43]

      (43) Li, Z.; Zhang, S. L.; Fu, Y.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815. doi: 10.1021/ja810157e

    44. [44]

      (44) Czaplik, W. M.; Mayer, M.; Jacobi vonWangelin, A. Angew. Chem. Int. Edit. 2009, 48, 607. doi: 10.1002/anie.v48:3

    45. [45]

      (45) Amatore, M.; smini, C. Chem. Commun. 2008, 5019.

    46. [46]

      (46) Krasovskiy, A.; Duplais, C.; Lipshutz, B. H. J. Am. Chem. Soc. 2009, 131, 15592. doi: 10.1021/ja906803t

    47. [47]

      (47) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012, 134, 6146. doi: 10.1021/ja301769r

    48. [48]

      (48) Jiang, F.; Ren, Q. J. Organomet. Chem. 2014, 757, 72. doi: 10.1016/j.jorganchem.2013.12.047


  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    6. [6]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(717)
  • Abstract views(698)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return