Citation:
JIANG Feng, REN Qing-Hua. Reaction Mechanism for the Ni-Catalyzed Reductive Cross-Coupling of Aryl Halides[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 821-828.
doi:
10.3866/PKU.WHXB201403241
-
The mechanism of the Ni-catalyzed reductive cross-coupling reaction of bromobenzene (R1) and methyl 4-bromobenzoate (R2) to form an unsymmetrical biaryl system has been theoretically investigated using density functional theory calculations. Our results showed that the Ni0-catalyzed process was favored over the NiI-catalyzed mechanism. The mechanism for the reaction of the Ni0 catalyst initially attacking either R1 or R2 was quite similar, where the energy barrier in the gas phase for the rate-limiting step was 70.50 or 49.66 kJ·mol-1, respectively. The mechanism in the favored Ni0-catalyzed reaction involved the following steps: first oxidative addition, reduction, second oxidative addition, reductive elimination, and catalyst regeneration. Our calculated results also indicated that no organometallic reagents were produced in the reaction cycle.
-
-
-
[1]
(1) Torssell, K. B. Natural Product Chemistry: a Mechanistic and Biosynthetic Approach to Secondary Metabolism; JohnWiley & Sons: New Jersey, 1983; pp 401-404.
-
[2]
(2) Bonesi, S. M.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Edit. 2008, 47, 10022. doi: 10.1002/anie.v47:52
-
[3]
(3) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651. doi: 10.1021/cr0505268
-
[4]
(4) Roncali, J. Chem. Rev. 1992, 92, 711. doi: 10.1021/cr00012a009
-
[5]
(5) Yang, W. Y.; Ahn, J. H.; Yoo, Y. S.; Oh, N. K.; Lee, M. Nat. Mater. 2005, 4, 399. doi: 10.1038/nmat1373
-
[6]
(6) Huang, Z.; Lee, H.; Lee, E.; Kang, S. K.; Nam, J. M.; Lee, M. Nat. Commun. 2011, 2, 459. doi: 10.1038/ncomms1465
-
[7]
(7) Hajduk, P. J.; Bures, M.; Praestgaard, J.; Fesik, S.W. J. Med. Chem. 2000, 43, 3443. doi: 10.1021/jm000164q
-
[8]
(8) Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582. doi: 10.1021/jo9612990
-
[9]
(9) Blettner, C. G.; König, W. A.; Stenzel, W.; Schotten, T. J. Org. Chem. 1999, 64, 3885. doi: 10.1021/jo982135h
-
[10]
(10) Fagnoni, M.; Mella, M.; Albini, A. Org. Lett. 1999, 1, 1299. doi: 10.1021/ol990982g
-
[11]
(11) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Sasson, Y. J. Org. Chem. 2000, 65, 3107. doi: 10.1021/jo991868e
-
[12]
(12) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601. doi: 10.1016/S0040-4020(00)00929-7
-
[13]
(13) Hassan, J.; Sévignon, M.; zzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. doi: 10.1021/cr000664r
-
[14]
(14) Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org. Chem. 2006, 71, 1284. doi: 10.1021/jo052300a
-
[15]
(15) Dankwardt, J.W. Angew. Chem. Int. Edit. 2004, 116, 2482.
-
[16]
(16) Dankwardt, J.W. J. Organomet. Chem. 2005, 690, 932. doi: 10.1016/j.jorganchem.2004.10.037
-
[17]
(17) Catellani, M.; Motti, E.; Della Ca, N.; Ferraccioli, R. Eur. J. Org. Chem. 2007, 2007, 4153.
-
[18]
(18) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Edit. 2007, 119, 5455.
-
[19]
(19) Zhou, Z.; Liu, M.; Wu, X.; Yu, H.; Xu, G.; Xie, Y. Appl. Organomet. Chem. 2013, 27, 562.
-
[20]
(20) Breitenfeld, J.; Vechorkin, O.; Corminboeuf, C.; Scopelliti, R.; Hu, X. Organometallics 2010, 29, 3686. doi: 10.1021/om1007506
-
[21]
(21) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. doi: 10.1021/cr100327p
-
[22]
(22) Amatore, M.; smini, C. Angew. Chem. Int. Edit. 2008, 120, 2119.
-
[23]
(23) Qian, Q.; Zang, Z.; Wang, S.; Chen, Y.; Lin, K.; ng, H. Synlett 2013, 24, 619. doi: 10.1055/s-00000083
-
[24]
(24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03, Revision 01; Gaussian Inc.; Wallingford, CT, 2004.
-
[25]
(25) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[26]
(26) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[27]
(27) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[28]
(28) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
-
[29]
(29) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. doi: 10.1063/1.438955
-
[30]
(30) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639. doi: 10.1063/1.438980
-
[31]
(31) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123. doi: 10.1007/BF01114537
-
[32]
(32) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669. doi: 10.1002/jcc.10189
-
[33]
(33) Lin, B. L.; Liu, L.; Fu, Y.; Luo, S.W.; Chen, Q.; Guo, Q. X. Organometallics 2004, 23, 2114. doi: 10.1021/om034067h
-
[34]
(34) Liu, Y.; Liu, J.W.; Yang, X. Z. Acta Phys. -Chim. Sin. 2002, 18, 1068. [刘跃, 刘佳雯, 杨小震. 物理化学学报, 2002, 18, 1068.] doi: 10.3866/PKU.WHXB20021203
-
[35]
(35) Li, Z.; Jiang, Y. Y.; Fu, Y. Chem. Eur. J. 2012, 18, 4345. doi: 10.1002/chem.v18.14
-
[36]
(36) Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73, 3680. doi: 10.1021/jo702497p
-
[37]
(37) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13, 1218. doi: 10.1021/ol200098d
-
[38]
(38) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6319. doi: 10.1021/ja00515a028
-
[39]
(39) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1986, 108, 719. doi: 10.1021/ja00264a024
-
[40]
(40) Besora, M.; Carreón-Macedo, J. L.; Cimas, Á.; Harvey, J. N. Adv. Inorg. Chem. 2009, 61, 573. doi: 10.1016/S0898-8838(09)00210-4
-
[41]
(41) Phapale, V. B.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2009, 15, 12681. doi: 10.1002/chem.v15:46
-
[42]
(42) Moncomble, A.; Le Floch, P.; smini, C. Chem. Eur. J. 2009, 15, 4770. doi: 10.1002/chem.v15:19
-
[43]
(43) Li, Z.; Zhang, S. L.; Fu, Y.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815. doi: 10.1021/ja810157e
-
[44]
(44) Czaplik, W. M.; Mayer, M.; Jacobi vonWangelin, A. Angew. Chem. Int. Edit. 2009, 48, 607. doi: 10.1002/anie.v48:3
-
[45]
(45) Amatore, M.; smini, C. Chem. Commun. 2008, 5019.
-
[46]
(46) Krasovskiy, A.; Duplais, C.; Lipshutz, B. H. J. Am. Chem. Soc. 2009, 131, 15592. doi: 10.1021/ja906803t
-
[47]
(47) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012, 134, 6146. doi: 10.1021/ja301769r
-
[48]
(48) Jiang, F.; Ren, Q. J. Organomet. Chem. 2014, 757, 72. doi: 10.1016/j.jorganchem.2013.12.047
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[5]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[6]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[7]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[8]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[9]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[10]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[11]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[12]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[13]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[14]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[15]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[16]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[17]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[18]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[1]
Metrics
- PDF Downloads(717)
- Abstract views(750)
- HTML views(45)