Citation: TAN Xiao-He, ZHOU ng-Bing, DOU Rong-Fei, PEI Yan, FAN Kang-Nian, QIAO Ming-Hua, SUN Bin, ZONG Bao-Ning. Partial Hydrogenation of Benzene to Cyclohexene over Novel Ru-B/MOF Catalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 932-942. doi: 10.3866/PKU.WHXB201403212 shu

Partial Hydrogenation of Benzene to Cyclohexene over Novel Ru-B/MOF Catalysts

  • Received Date: 24 January 2014
    Available Online: 21 March 2014

    Fund Project:

  • A series of metal-organic framework (MOF) materials were synthesized together with the corresponding amorphous Ru-B/MOF catalysts, which were prepared by the impregnation-chemical reduction method. These materials were subsequently evaluated for the first time as catalysts for the partial hydrogenation of benzene to cyclohexene. The results for the initial hydrogenation rate (r0) for the different catalysts followed the trend Ru-B/MIL-53(Al)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-53(Cr)> Ru-B/MIL-101(Cr)>>Ru-B/MIL-100(Fe), whereas the initial selectivity for cyclohexene (S0) was of the order of Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-101(Cr)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe). The Ru-B/MIL-53(Al) catalyst exhibited the highest r0 and S0 values of 23 mmol·min-1·-1 and 72%, respectively. The characterization results demonstrated that the Ru-B amorphous alloy nanoparticles were highly dispersed on MIL-53(Al) with the average diameter of 3.2 nm. In contrast, the Ru-B nanoparticles on MIL-100(Fe) had an average diameter of 46.6 nm. The smaller Ru-B nanoparticles not only provided more active sites for the hydrogenation to occur, but could also be beneficial in the formation of cyclohexene. The reaction conditions were further optimized for the Ru-B/MIL-53(Al) catalyst. At 180 ℃ under a H2 pressure of 5 MPa, a cyclohexene yield of 24% was obtained, highlighting the potential of MOF materials as catalyst supports for the partial hydrogenation of benzene.

  • 加载中
    1. [1]

      (1) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. doi: 10.1126/science.1083440

    2. [2]

      (2) Zeng, Y. Y.; Zhang, B. J. Acta Phys. -Chim. Sin. 2008, 24, 1493. [曾余瑶, 张秉坚. 物理化学学报, 2008, 24, 1493.] doi: 10.3866/PKU.WHXB20080828

    3. [3]

      (3) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477. doi: 10.1039/b802426j

    4. [4]

      (4) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. doi: 10.1039/b807080f

    5. [5]

      (5) Liang, Q.; Zhao, Z.; Liu, J.; Wei, Y. C.; Jiang, G. Y.; Duan, A. J. Acta Phys. -Chim. Sin. 2014, 30, 129. [粱倩, 赵震, 刘坚, 韦岳山, 姜桂元, 段爱军. 物理化学学报, 2014, 30, 129.] doi: 10.3866/PKU.WHXB201311201

    6. [6]

      (6) Zhou, Y. X.; Liang, S. G.; Song, J. L.; Wu, T. B.; Hu, S. Q.; Liu, H. Z.; Jiang, T.; Han, B. X. Acta Phys. -Chim. Sin. 2010, 26, 939. [周印羲, 粱曙光, 宋金良, 吴天斌, 胡素琴, 刘会贞, 姜涛, 韩布兴. 物理化学学报, 2010, 26, 939.] doi: 10.3866/PKU.WHXB20100406

    7. [7]

      (7) Liu, Y.; Mo, K.; Cui, Y. Inorg. Chem. 2013, 52, 10286. doi: 10.1021/ic400598x

    8. [8]

      (8) Gu, X.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. doi: 10.1021/ja200122f

    9. [9]

      (9) Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Angew. Chem. Int. Edit. 2006, 45, 4112.

    10. [10]

      (10) Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. doi: 10.1021/ja1099006

    11. [11]

      (11) Proch, S.; Herrmannsdorfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chem. -Eur. J. 2008, 14, 8204. doi: 10.1002/chem.v14:27

    12. [12]

      (12) Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B.; Fischer, R. A. J. Am. Chem. Soc. 2008, 130, 6119. doi: 10.1021/ja078231u

    13. [13]

      (13) Wu, T. B.; Zhang, P.; Ma, J.; Fan, H. L.; Wang, W. T.; Jiang, T.; Han, B. X. Chin. J. Catal. 2013, 34, 167. doi: 10.1016/S1872-2067(11)60475-0

    14. [14]

      (14) Wang, W. T.; Liu, H. Z.; Ding, G. D.; Zhang, P.; Wu, T. B.; Jiang, T.; Han, B. X. ChemCatChem 2012, 4, 1836. doi: 10.1002/cctc.v4.11

    15. [15]

      (15) Odenbrand, C. U. I.; Andersson, S. L. T. J. Chem. Technol. Biotechnol. 1982, 32, 365.

    16. [16]

      (16) Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29. doi: 10.1016/j.apcata.2004.04.038

    17. [17]

      (17) Sun, H. J.; Jiang, H. B.; Li, S. H.; Wang, H. X.; Pan, Y. J.; Dong, Y. Y.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 684. doi: 10.1016/S1872-2067(11)60489-0

    18. [18]

      (18) Liu, J. L.; Zhu, Y.; Liu, J.; Pei, Y.; Li, Z. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. J. Catal. 2009, 268, 100. doi: 10.1016/j.jcat.2009.09.007

    19. [19]

      (19) Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Appl. Surf. Sci. 1997, 121 -122, 448.

    20. [20]

      (20) Millange, F.; Serre, C.; Guillou, N.; Férey, G.; Walton, R. I. Angew. Chem. Int. Edit. 2008, 47, 4100.

    21. [21]

      (21) Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519. doi: 10.1021/ja0276974

    22. [22]

      (22) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. -Eur. J. 2004, 10, 1373.

    23. [23]

      (23) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.; Grenèche, J. M.; Tarascon, J. M. Angew. Chem. Int. Edit. 2007, 46, 3259.

    24. [24]

      (24) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. doi: 10.1021/ja8057953

    25. [25]

      (25) Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Férey, G. J. Am. Chem. Soc. 2008, 130, 16926. doi: 10.1021/ja8039579

    26. [26]

      (26) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040. doi: 10.1126/science.1116275

    27. [27]

      (27) Yoon, J.W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E. Angew. Chem. Int. Edit. 2010, 49, 5949. doi: 10.1002/anie.201001230

    28. [28]

      (28) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater. 2011, 23, 1700. doi: 10.1021/cm1022882

    29. [29]

      (29) Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Férey, G.; Stock, N. Inorg. Chem. 2009, 48, 3057. doi: 10.1021/ic8023265

    30. [30]

      (30) Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Chem. Commun. 2011, 47, 1521. doi: 10.1039/c0cc03038d

    31. [31]

      (31) Karim, A. M.; Prasad, V.; Mpourmpakis, G.; Lonergan, W.W.; Frenkel, A. I.; Chen, J. G.; Vlachos, D. G. J. Am. Chem. Soc. 2009, 131, 12230. doi: 10.1021/ja902587k

    32. [32]

      (32) Zhou, G. B.; Liu, J. L.; Tan, X. H.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.

    33. [33]

      (33) Lengeler, B.; Eisenberger, P. Phys. Rev. B 1980, 21, 4507. doi: 10.1103/PhysRevB.21.4507

    34. [34]

      (34) De Crescenzi, M.; Balsatori, A.; Comin, F.; Incoccia, L.; Mobilio, S.; Motta, N. Solid State Commun. 1981, 37, 921. doi: 10.1016/0038-1098(81)91187-X

    35. [35]

      (35) Ankudinov, A.; Ravel, B.; Rehr, J. J. FEFF8, Version 8.20; University ofWashington: Seattle, WA, 2002.

    36. [36]

      (36) Struijk, J.; Moene, R.; van der Kamp, T.; Scholten, J. J. F. Appl. Catal. A 1992, 89, 77. doi: 10.1016/0926-860X(92)80079-R

    37. [37]

      (37) Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Edit. 2011, 50, 10453. doi: 10.1002/anie.201104959

    38. [38]

      (38) Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal. A 2009, 353, 282. doi: 10.1016/j.apcata.2008.10.056

    39. [39]

      (39) Zhao, Y. J.; Zhang, J. L.; Han, B. X.; Song, J. L.; Li, J. S.; Wang, Q. Angew. Chem. Int. Edit. 2011, 50, 636. doi: 10.1002/anie.v50.3

    40. [40]

      (40) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J. Ed.; Perkin-Elmer: Eden Prairie, Minnesota, 1992; p 253.

    41. [41]

      (41) Campbell, P. S.; Santini, C. C.; Bayard, F.; Chauvin, Y.; Collière, V.; Pod raek, A.; Costa mes, M. F.; Sá, J. J. Catal. 2010, 275, 99. doi: 10.1016/j.jcat.2010.07.018

    42. [42]

      (42) Xie, S. H.; Qiao, M. H.; Li, H. X.; Wang, W. J.; Deng, J. F. Appl. Catal. A 1999, 176, 129. doi: 10.1016/S0926-860X(98)00232-4

    43. [43]

      (43) Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Chem. Soc. Rev. 2012, 41, 8140. doi: 10.1039/c2cs35182j

    44. [44]

      (44) Pei, Y.; Guo, P. J.; Qiao, M. H.; Li, H. X.; Wei, S. Q.; He, H. Y.; Fan, K. N. J. Catal. 2007, 248, 303. doi: 10.1016/j.jcat.2007.03.024

    45. [45]

      (45) Wang, X. G.; Yan, W. S.; Zhong, W. J.; Zhang, X. Y.; Wei, S. Q. Chem. J. Chin. Univ. 2001, 22, 349. [王晓光, 闫文胜, 钟文杰, 张新夷, 韦世强. 高等学校化学学报, 2001, 22, 349.]

    46. [46]

      (46) Ronchin, L.; Toniolo, L. Catal. Today 1999, 48, 255. doi: 10.1016/S0920-5861(98)00380-0

    47. [47]

      (47) Hronec, M.; Cvengroaová, Z.; Králik, M.; Palma, G.; Corain, B. J. Mol. Catal. A 1996, 105, 25. doi: 10.1016/1381-1169(95)00184-0

    48. [48]

      (48) Mazzieri, V. A.; L′Argentiére, P. C.; Fí li, N. S. React. Kinet. Catal. Lett. 2004, 81, 107. doi: 10.1023/B:REAC.0000016523.15129.90

    49. [49]

      (49) Silveira, E. T.; Umpierre, A. P.; Rossi, L. M.; Machado, G.; Morais, J.; Soares, G. V.; Baumvol, I. J. R.; Teixeira, S. R.; Fichtner, P. F. P.; Dupont, J. Chem. -Eur. J. 2004, 10, 3734.

    50. [50]

      (50) Struijk, J.; d′Angremond, M.; Lucas-de Regt, W. J. M.; Scholten, J. J. F. Appl. Catal. A 1992, 83, 263. doi: 10.1016/0926-860X(92)85039-E

    51. [51]

      (51) Ronchin, L.; Toniolo, L. Appl. Catal. A 2001, 208, 77. doi: 10.1016/S0926-860X(00)00690-6

    52. [52]

      (52) Fan, C.; Zhu, Y. A.; Zhou, X. G.; Liu, Z. P. Catal. Today 2011, 160, 234. doi: 10.1016/j.cattod.2010.03.075

    53. [53]

      (53) Liu, H. Z.; Liang, S. G.; Wang, W. T.; Jiang, T.; Han, B. X. J. Mol. Catal. A 2011, 341, 35. doi: 10.1016/j.molcata.2011.03.021


  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    9. [9]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    17. [17]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(874)
  • Abstract views(1286)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return