Citation:
TAN Xiao-He, ZHOU ng-Bing, DOU Rong-Fei, PEI Yan, FAN Kang-Nian, QIAO Ming-Hua, SUN Bin, ZONG Bao-Ning. Partial Hydrogenation of Benzene to Cyclohexene over Novel Ru-B/MOF Catalysts[J]. Acta Physico-Chimica Sinica,
;2014, 30(5): 932-942.
doi:
10.3866/PKU.WHXB201403212
-
A series of metal-organic framework (MOF) materials were synthesized together with the corresponding amorphous Ru-B/MOF catalysts, which were prepared by the impregnation-chemical reduction method. These materials were subsequently evaluated for the first time as catalysts for the partial hydrogenation of benzene to cyclohexene. The results for the initial hydrogenation rate (r0) for the different catalysts followed the trend Ru-B/MIL-53(Al)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-53(Cr)> Ru-B/MIL-101(Cr)>>Ru-B/MIL-100(Fe), whereas the initial selectivity for cyclohexene (S0) was of the order of Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)>Ru-B/UIO-66(Zr)-NH2>Ru-B/MIL-101(Cr)>Ru-B/MIL-53(Al)-NH2>Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe). The Ru-B/MIL-53(Al) catalyst exhibited the highest r0 and S0 values of 23 mmol·min-1·-1 and 72%, respectively. The characterization results demonstrated that the Ru-B amorphous alloy nanoparticles were highly dispersed on MIL-53(Al) with the average diameter of 3.2 nm. In contrast, the Ru-B nanoparticles on MIL-100(Fe) had an average diameter of 46.6 nm. The smaller Ru-B nanoparticles not only provided more active sites for the hydrogenation to occur, but could also be beneficial in the formation of cyclohexene. The reaction conditions were further optimized for the Ru-B/MIL-53(Al) catalyst. At 180 ℃ under a H2 pressure of 5 MPa, a cyclohexene yield of 24% was obtained, highlighting the potential of MOF materials as catalyst supports for the partial hydrogenation of benzene.
-
Keywords:
-
Metal-organic framework
, - Ruthenium,
- Benzene,
- Cyclohexene,
- Partial hydrogenation
-
-
-
-
[1]
(1) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. doi: 10.1126/science.1083440
-
[2]
(2) Zeng, Y. Y.; Zhang, B. J. Acta Phys. -Chim. Sin. 2008, 24, 1493. [曾余瑶, 张秉坚. 物理化学学报, 2008, 24, 1493.] doi: 10.3866/PKU.WHXB20080828
-
[3]
(3) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477. doi: 10.1039/b802426j
-
[4]
(4) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. doi: 10.1039/b807080f
-
[5]
(5) Liang, Q.; Zhao, Z.; Liu, J.; Wei, Y. C.; Jiang, G. Y.; Duan, A. J. Acta Phys. -Chim. Sin. 2014, 30, 129. [粱倩, 赵震, 刘坚, 韦岳山, 姜桂元, 段爱军. 物理化学学报, 2014, 30, 129.] doi: 10.3866/PKU.WHXB201311201
-
[6]
(6) Zhou, Y. X.; Liang, S. G.; Song, J. L.; Wu, T. B.; Hu, S. Q.; Liu, H. Z.; Jiang, T.; Han, B. X. Acta Phys. -Chim. Sin. 2010, 26, 939. [周印羲, 粱曙光, 宋金良, 吴天斌, 胡素琴, 刘会贞, 姜涛, 韩布兴. 物理化学学报, 2010, 26, 939.] doi: 10.3866/PKU.WHXB20100406
-
[7]
(7) Liu, Y.; Mo, K.; Cui, Y. Inorg. Chem. 2013, 52, 10286. doi: 10.1021/ic400598x
-
[8]
(8) Gu, X.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. doi: 10.1021/ja200122f
-
[9]
(9) Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Angew. Chem. Int. Edit. 2006, 45, 4112.
-
[10]
(10) Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. doi: 10.1021/ja1099006
-
[11]
(11) Proch, S.; Herrmannsdorfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chem. -Eur. J. 2008, 14, 8204. doi: 10.1002/chem.v14:27
-
[12]
(12) Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H. H.; Chaudret, B.; Fischer, R. A. J. Am. Chem. Soc. 2008, 130, 6119. doi: 10.1021/ja078231u
-
[13]
(13) Wu, T. B.; Zhang, P.; Ma, J.; Fan, H. L.; Wang, W. T.; Jiang, T.; Han, B. X. Chin. J. Catal. 2013, 34, 167. doi: 10.1016/S1872-2067(11)60475-0
-
[14]
(14) Wang, W. T.; Liu, H. Z.; Ding, G. D.; Zhang, P.; Wu, T. B.; Jiang, T.; Han, B. X. ChemCatChem 2012, 4, 1836. doi: 10.1002/cctc.v4.11
-
[15]
(15) Odenbrand, C. U. I.; Andersson, S. L. T. J. Chem. Technol. Biotechnol. 1982, 32, 365.
-
[16]
(16) Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29. doi: 10.1016/j.apcata.2004.04.038
-
[17]
(17) Sun, H. J.; Jiang, H. B.; Li, S. H.; Wang, H. X.; Pan, Y. J.; Dong, Y. Y.; Liu, S. C.; Liu, Z. Y. Chin. J. Catal. 2013, 34, 684. doi: 10.1016/S1872-2067(11)60489-0
-
[18]
(18) Liu, J. L.; Zhu, Y.; Liu, J.; Pei, Y.; Li, Z. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. J. Catal. 2009, 268, 100. doi: 10.1016/j.jcat.2009.09.007
-
[19]
(19) Nagahara, H.; Ono, M.; Konishi, M.; Fukuoka, Y. Appl. Surf. Sci. 1997, 121 -122, 448.
-
[20]
(20) Millange, F.; Serre, C.; Guillou, N.; Férey, G.; Walton, R. I. Angew. Chem. Int. Edit. 2008, 47, 4100.
-
[21]
(21) Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519. doi: 10.1021/ja0276974
-
[22]
(22) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. -Eur. J. 2004, 10, 1373.
-
[23]
(23) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.; Grenèche, J. M.; Tarascon, J. M. Angew. Chem. Int. Edit. 2007, 46, 3259.
-
[24]
(24) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. doi: 10.1021/ja8057953
-
[25]
(25) Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Férey, G. J. Am. Chem. Soc. 2008, 130, 16926. doi: 10.1021/ja8039579
-
[26]
(26) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040. doi: 10.1126/science.1116275
-
[27]
(27) Yoon, J.W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E. Angew. Chem. Int. Edit. 2010, 49, 5949. doi: 10.1002/anie.201001230
-
[28]
(28) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Chem. Mater. 2011, 23, 1700. doi: 10.1021/cm1022882
-
[29]
(29) Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Férey, G.; Stock, N. Inorg. Chem. 2009, 48, 3057. doi: 10.1021/ic8023265
-
[30]
(30) Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Chem. Commun. 2011, 47, 1521. doi: 10.1039/c0cc03038d
-
[31]
(31) Karim, A. M.; Prasad, V.; Mpourmpakis, G.; Lonergan, W.W.; Frenkel, A. I.; Chen, J. G.; Vlachos, D. G. J. Am. Chem. Soc. 2009, 131, 12230. doi: 10.1021/ja902587k
-
[32]
(32) Zhou, G. B.; Liu, J. L.; Tan, X. H.; Pei, Y.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Ind. Eng. Chem. Res. 2012, 51, 12205.
-
[33]
(33) Lengeler, B.; Eisenberger, P. Phys. Rev. B 1980, 21, 4507. doi: 10.1103/PhysRevB.21.4507
-
[34]
(34) De Crescenzi, M.; Balsatori, A.; Comin, F.; Incoccia, L.; Mobilio, S.; Motta, N. Solid State Commun. 1981, 37, 921. doi: 10.1016/0038-1098(81)91187-X
-
[35]
(35) Ankudinov, A.; Ravel, B.; Rehr, J. J. FEFF8, Version 8.20; University ofWashington: Seattle, WA, 2002.
-
[36]
(36) Struijk, J.; Moene, R.; van der Kamp, T.; Scholten, J. J. F. Appl. Catal. A 1992, 89, 77. doi: 10.1016/0926-860X(92)80079-R
-
[37]
(37) Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Edit. 2011, 50, 10453. doi: 10.1002/anie.201104959
-
[38]
(38) Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal. A 2009, 353, 282. doi: 10.1016/j.apcata.2008.10.056
-
[39]
(39) Zhao, Y. J.; Zhang, J. L.; Han, B. X.; Song, J. L.; Li, J. S.; Wang, Q. Angew. Chem. Int. Edit. 2011, 50, 636. doi: 10.1002/anie.v50.3
-
[40]
(40) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J. Ed.; Perkin-Elmer: Eden Prairie, Minnesota, 1992; p 253.
-
[41]
(41) Campbell, P. S.; Santini, C. C.; Bayard, F.; Chauvin, Y.; Collière, V.; Pod raek, A.; Costa mes, M. F.; Sá, J. J. Catal. 2010, 275, 99. doi: 10.1016/j.jcat.2010.07.018
-
[42]
(42) Xie, S. H.; Qiao, M. H.; Li, H. X.; Wang, W. J.; Deng, J. F. Appl. Catal. A 1999, 176, 129. doi: 10.1016/S0926-860X(98)00232-4
-
[43]
(43) Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Chem. Soc. Rev. 2012, 41, 8140. doi: 10.1039/c2cs35182j
-
[44]
(44) Pei, Y.; Guo, P. J.; Qiao, M. H.; Li, H. X.; Wei, S. Q.; He, H. Y.; Fan, K. N. J. Catal. 2007, 248, 303. doi: 10.1016/j.jcat.2007.03.024
-
[45]
(45) Wang, X. G.; Yan, W. S.; Zhong, W. J.; Zhang, X. Y.; Wei, S. Q. Chem. J. Chin. Univ. 2001, 22, 349. [王晓光, 闫文胜, 钟文杰, 张新夷, 韦世强. 高等学校化学学报, 2001, 22, 349.]
-
[46]
(46) Ronchin, L.; Toniolo, L. Catal. Today 1999, 48, 255. doi: 10.1016/S0920-5861(98)00380-0
-
[47]
(47) Hronec, M.; Cvengroaová, Z.; Králik, M.; Palma, G.; Corain, B. J. Mol. Catal. A 1996, 105, 25. doi: 10.1016/1381-1169(95)00184-0
-
[48]
(48) Mazzieri, V. A.; L′Argentiére, P. C.; Fí li, N. S. React. Kinet. Catal. Lett. 2004, 81, 107. doi: 10.1023/B:REAC.0000016523.15129.90
-
[49]
(49) Silveira, E. T.; Umpierre, A. P.; Rossi, L. M.; Machado, G.; Morais, J.; Soares, G. V.; Baumvol, I. J. R.; Teixeira, S. R.; Fichtner, P. F. P.; Dupont, J. Chem. -Eur. J. 2004, 10, 3734.
-
[50]
(50) Struijk, J.; d′Angremond, M.; Lucas-de Regt, W. J. M.; Scholten, J. J. F. Appl. Catal. A 1992, 83, 263. doi: 10.1016/0926-860X(92)85039-E
-
[51]
(51) Ronchin, L.; Toniolo, L. Appl. Catal. A 2001, 208, 77. doi: 10.1016/S0926-860X(00)00690-6
-
[52]
(52) Fan, C.; Zhu, Y. A.; Zhou, X. G.; Liu, Z. P. Catal. Today 2011, 160, 234. doi: 10.1016/j.cattod.2010.03.075
-
[53]
(53) Liu, H. Z.; Liang, S. G.; Wang, W. T.; Jiang, T.; Han, B. X. J. Mol. Catal. A 2011, 341, 35. doi: 10.1016/j.molcata.2011.03.021
-
[1]
-
-
-
[1]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[2]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[3]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[4]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[5]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[6]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[7]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[8]
Mengzhen JIANG , Qian WANG , Junfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355
-
[9]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[12]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[13]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[14]
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
-
[15]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[16]
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
-
[17]
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
-
[18]
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
-
[19]
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
-
[20]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[1]
Metrics
- PDF Downloads(874)
- Abstract views(1286)
- HTML views(66)