Citation: WANG Juan, XIA Shu-Wei, YU Liang-Min. Adsorption Mechanism of Hydrated Pb(OH)+ on the Kaolinite (001) Surface[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 829-835. doi: 10.3866/PKU.WHXB201403211
-
The adsorption behavior of Pb(OH)+ on the basal octahedral (001) surface of kaolinite has been investigated using the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) of density functional theory with periodic slab models, where the water environment was considered. The coordination geometry, coordination number, preferred adsorption position, and adsorption type were examined, with binding energy estimated. All the monodentate and bidentate complexes exhibited hemi- directed geometry with coordination numbers of 3-5. Site of "Ou" with "up" hydrogen was more favorable for monodentate complex than site of "Ol" with "lying" hydrogen. Monodentate complexation of "Ou" site with a high binding energy of -182.60 kJ·mol-1 should be the most preferred adsorption mode, while bidentate complexation on "OuOl" site of single Al center was also probable. The stability of adsorption complex was found closely related to the hydrogen bonding interactions between surface Ol and H in aqua ligands of Pb(Ⅱ). Mulliken population and density of states analyses showed that coupling of Pb 6p with the antibonding Pb 6s―O 2p states was the primary orbital interaction between Pb(Ⅱ) and the surface oxygen. Hydrogen complexation occupied a much large proportion in the joint coordination structure of bidentate complex, where bonding state filling predominated for the Pb―Ol interaction.
-
-
[1]
(1) Karlsson, K.; Viklander, M.; Scholes, L.; Revitt, M. J. Hazard. Mater. 2010, 178, 612. doi: 10.1016/j.jhazmat.2010.01.129
-
[2]
(2) Wasim Aktar, M.; Paramasivam, M.; Ganguly, M.; Purkait, S.; Sengupta, D. Environ. Monit. Assess. 2010, 160, 207. doi: 10.1007/s10661-008-0688-5
-
[3]
(3) ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Lead (Update). U. S. Department of Health and Human Services, Atlanta, Georgia. http://www.atsdr.cdc. v/toxprofiles/tp.asp?id=96& tid=22 (accessed Nov 20, 2012).
-
[4]
(4) Tarasevich, Y. I.; Klimova, G. M. Appl. Clay Sci. 2001, 19, 95. doi: 10.1016/S0169-1317(01)00061-8
-
[5]
(5) Gupta, S. S.; Bhattacharyya, K. G. Phys. Chem. Chem. Phys. 2012, 14, 6698. doi: 10.1039/c2cp40093f
-
[6]
(6) Hong, H. L.; Min, X. M.; Zhou, Y. J. Wuhan Univ. Technol. 2007, 22, 661. doi: 10.1007/s11595-006-4661-2
-
[7]
(7) Spark, K. M.; Wells, J. D.; Johnson, B. B. Eur. J. Soil Sci. 1995, 46, 633. doi: 10.1111/ejs.1995.46.issue-4
-
[8]
(8) Srivastava, P.; Singh, B.; An ve, M. J. Colloid Interface Sci. 2005, 290, 28. doi: 10.1016/j.jcis.2005.04.036
-
[9]
(9) Hizal, J.; Apak, R.; Hoell, W. H. Environ. Prog. Sustain. 2009, 28, 493. doi: 10.1002/ep.v28:4
-
[10]
(10) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. doi: 10.1021/ja00905a001
-
[11]
(11) Puskar, L.; Barran, P. E.; Duncombe, B. J.; Chapman, D.; Stace, A. J. Phys. Chem. A 2005, 109, 273. doi: 10.1021/jp047637f
-
[12]
(12) Shimoni-Livny, L.; Glusker, J. P.; Bock, C.W. Inorg. Chem. 1998, 37, 1853. doi: 10.1021/ic970909r
-
[13]
(13) Hummer, K.; Grüneis, A.; Kresse, G. Phys. Rev. B 2007, 75, 195211. doi: 10.1103/PhysRevB.75.195211
-
[14]
(14) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. Z. Kristallographie 2005, 220, 567.
-
[15]
(15) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[16]
(16) Ireta, J.; Neugebauer, J.; Scheffler, M. J. Phys. Chem. A 2004, 108, 5692. doi: 10.1021/jp0377073
-
[17]
(17) Sun, T.; Wang, Y. B. Acta Phys. -Chim. Sin. 2011, 27 (11), 2553. [孙涛, 王一波. 物理化学学报, 2011, 27 (11), 2553.] doi: 10.3866/PKU.WHXB20111017
-
[18]
(18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892
-
[19]
(19) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[20]
(20) Bish, D. L. Clay. Clay Miner. 1993, 41, 738. doi: 10.1346/CCMN
-
[21]
(21) Hu, X. L.; Michaelides, A. Surf. Sci. 2008, 602, 960. doi: 10.1016/j.susc.2007.12.032
-
[22]
(22) Kremleva, A.; Krüger, S.; Rösch, N. Langmuir 2008, 24, 9515. doi: 10.1021/la801278j
-
[23]
(23) Mason, S. E.; Iceman, C. R.; Tanwar, K. S.; Trainor, T. P.; Chaka, A. M. J. Phys. Chem. C 2009, 113, 2159. doi: 10.1021/jp807321e
-
[24]
(24) urlaouen, C.; Gerard, H.; Parisel, O. Chem. -Eur. J. 2006, 12, 5024.
-
[25]
(25) Wang, J.; Xia, S.W.; Yu, L. M. Acta Chim. Sin. 2013, 71, 1307. [王娟, 夏树伟, 于良民. 化学学报, 2013, 71, 1307.]
-
[26]
(26) Mishra, B.; Haack, E. A.; Maurice, P. A.; Bunker, B. A. Chem. Geol. 2010, 275, 199. doi: 10.1016/j.chemgeo.2010.05.009
-
[27]
(27) Bargar, J. R.; Brown, G. E., Jr.; Parks, G. A. Geochim. Cosmochim. Acta 1997, 61, 2617. doi: 10.1016/S0016-7037(97)00124-5
-
[28]
(28) Bargar, J. R.; Brown, G. E., Jr.; Parks, G. A. Geochim. Cosmochim. Acta 1997, 61, 2639. doi: 10.1016/S0016-7037(97)00125-7
-
[29]
(29) Walsh, A.; Watson, G.W. J. Solid State Chem. 2005, 178, 1422. doi: 10.1016/j.jssc.2005.01.030
-
[30]
(30) Mudring, A. V. Eur. J. Inorg. Chem. 2007, 2007 (6), 882.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[6]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[7]
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
-
[8]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[9]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[10]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[11]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[12]
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
-
[13]
Runze Xu , Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083
-
[14]
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
-
[15]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[16]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[17]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[18]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[19]
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
-
[20]
Ping Cai , Yaxian Zhu , Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027
-
[1]
Metrics
- PDF Downloads(704)
- Abstract views(880)
- HTML views(24)