Citation: LI Yan, ZOU Lu-Yi, REN Ai-Min. Charge Transport and Fluorescence Properties of a Series of Red-Emitting Materials Based on Benzothiadiazole and Silafluorene[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 855-865. doi: 10.3866/PKU.WHXB201403113 shu

Charge Transport and Fluorescence Properties of a Series of Red-Emitting Materials Based on Benzothiadiazole and Silafluorene

  • Received Date: 21 January 2014
    Available Online: 11 March 2014

    Fund Project:

  • The ground and excited states, charge- transport, and fluorescence properties of a series of polymers based on benzothiadiazole and silafluorene were investigated using density functional theory (DFT). The band gaps, ionization potentials, electron affinities, the lowest excitation energies, and absorption spectra of the polymers were estimated by extrapolating those of the oli mers to infinite chain lengths. The results show that the hole/electron injection/transport abilities and the optical properties of the polymers are significantly affected by the position of the benzothiadiazole group on the silafluorene group and the position of the butyl group on the thiophene group. (SiF2-DHTBT1-m)n and (SiF1-DHTBT1-m)n [hereafter SiF and DHTBT are silafluorene and 4,7-di(2-thienyl)-2,1,3-benzothiadiazole, respectively] show od hole and electron injection performances but (SiF1-DHTBT1-o)n and (SiF1-DHTBT1-p)n exhibit poor carrier injection performances. The predicted emission spectra of the polymers are located in the red visible-light range, except in the case of (SiF1-DHTBT1-o)n.

  • 加载中
    1. [1]

      (1) Garcia, A.; Bakus, R. C., II; Zalar, P.; Hoven, C. V.; Brzezinski, J. Z.; Nguyen, T. Q. J. Am.Chem. Soc. 2011, 133 (8), 2492. doi: 10.1021/ja106268w

    2. [2]

      (2) Pei, Q.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science 1995, 269 (5227), 1086. doi: 10.1126/science.269.5227.1086

    3. [3]

      (3) Burn, P. L.; Holmes, A. B.; Kraft, A.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R.W. Nature 1992, 356 (6364), 47. doi: 10.1038/356047a0

    4. [4]

      (4) Xu, X.; Han, B.; Chen, J.; Peng, J.; Wu, H.; Cao, Y. Macromolecules 2011, 44 (11), 4204. doi: 10.1021/ma200191p

    5. [5]

      (5) Park, M. J.; Lee, J.; Jung, I. H.; Park, J. H.; Wang, D. H.; Shim, H. K. Macromolecules 2008, 41 (24), 9643. doi: 10.1021/ma802043q

    6. [6]

      (6) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem. Int. Edit. 2008, 47 (22), 4070.

    7. [7]

      (7) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.

    8. [8]

      (8) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc. 1998, 120 (1), 207. doi: 10.1021/ja9727629

    9. [9]

      (9) Forrest, S. R. Chem. Rev. 1997, 97, 1973.

    10. [10]

      (10) Sirringhaus, H. Proc. IEEE 2009, 97 (9), 1570. doi: 10.1109/JPROC.2009.2021680

    11. [11]

      (11) Ho, C. L.; Wang, Q.; Lam, C. S.; Wong, W. Y.; Ma, D.; Wang, L.; Gao, Z. Q.; Chen, C. H.; Cheah, K.W.; Lin, Z. Chem. Asian J. 2009, 4 (1), 89. doi: 10.1002/asia.v4:1

    12. [12]

      (12) Cerezo, A.; Clifton, P. H.; Galtrey, M. J.; Humphreys, C. J.; Kelly, T. F.; Larson, D. J.; Lozano-Perez, S.; Marquis, E. A.; Oliver, R. A.; Sha, G.; Thompson, K.; Zandbergen, M.; Alvis, R. L. Mater. Today 2007, 10 (12), 36. doi: 10.1016/S1369-7021(07)70306-1

    13. [13]

      (13) Roncali, J.; Leriche, P.; Cravino, A. Adv. Mater. 2007, 19 (16), 2045.

    14. [14]

      (14) Roncali, J. Accounts Chem. Res. 2009, 42 (11), 1719. doi: 10.1021/ar900041b

    15. [15]

      (15) Jorgensen, M.; Krebs, F. C. J. Org. Chem. 2005, 70 (15), 6004. doi: 10.1021/jo0506783

    16. [16]

      (16) Wang, E.; Li, C.; Zhuang, W.; Peng, J.; Cao, Y. J. Mater. Chem. 2008, 18 (7), 797. doi: 10.1039/b716607a

    17. [17]

      (17) Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y. Appl. Phys. Lett. 2008, 92 (3), 033307. doi: 10.1063/1.2836266

    18. [18]

      (18) Kuhn, H. J. Chem. Phys. 1949, 17 (12), 1198. doi: 10.1063/1.1747143

    19. [19]

      (19) Lahti, P. M.; Obrzut, J.; Karasz, F. E. Macromolecules 1987, 20 (8), 2023. doi: 10.1021/ma00174a056

    20. [20]

      (20) Hohenberg, P. Phys. Rev. B 1964, 136 (3B), 864.

    21. [21]

      (21) Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648. doi: 10.1063/1.464913

    22. [22]

      (22) Stanton, J. F.; Gauss, J. R.; Ishikawa, N.; Head- rdon, M. J. Chem. Phys. 1995, 103 (10), 4160. doi: 10.1063/1.469601

    23. [23]

      (23) Foresman, J. B.; Head- rdon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96 (1), 135. doi: 10.1021/j100180a030

    24. [24]

      (24) Walters, V. A.; Hadad, C. M.; Thiel, Y.; Colson, S. D.; Wiberg, K. B.; Johnson, P. M.; Foresman, J. B. J. Am. Chem. Soc. 1991, 113 (13), 4782. doi: 10.1021/ja00013a011

    25. [25]

      (25) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108 (11), 4439. doi: 10.1063/1.475855

    26. [26]

      (26) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109 (19), 8218. doi: 10.1063/1.477483

    27. [27]

      (27) Matsuzawa, N. N.; Ishitani, A.; Dixon, D. A.; Uda, T. J. Phys. Chem. A 2001, 105 (20), 4953. doi: 10.1021/jp003937v

    28. [28]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.

    29. [29]

      (29) Marcus, R. Rev. Mod. Phys. 1993, 65 (3), 599. doi: 10.1103/RevModPhys.65.599

    30. [30]

      (30) Hush, N. S. J. Chem. Phys. 1958, 28 (5), 962. doi: 10.1063/1.1744305

    31. [31]

      (31) Marcus, R. A. J. Chem. Phys. 1956, 24 (5), 966. doi: 10.1063/1.1742723

    32. [32]

      (32) Nelsen, S. F.; Blomgren, F. J. Org. Chem. 2001, 66 (20), 6551. doi: 10.1021/jo001705m

    33. [33]

      (33) Nelsen, S. F.; Trieber, D. A.; Ismagilov, R. F.; Teki, Y. J. Am. Chem. Soc. 2001, 123 (24), 5684. doi: 10.1021/ja003436n

    34. [34]

      (34) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127 (7), 2339. doi: 10.1021/ja0461421

    35. [35]

      (35) Heeger, A. J.; Cao, Y.; Parker, I. D.; Yu, G.; Zhang, C. Nature 1999, 397 (6718), 414. doi: 10.1038/17087

    36. [36]

      (36) Karabunarliev, S.; Bittner, E. Phys. Rev. Lett. 2003, 90 (5), 057402. doi: 10.1103/PhysRevLett.90.057402

    37. [37]

      (37) Chen, L.; Zhu, L.; Shuai, Z. J. Phys. Chem. A 2006, 110 (50), 13349. doi: 10.1021/jp0652998

    38. [38]

      (38) Baldo, M.; Segal, M. Phys. Status Solidi A-Appl. Res. 2004, 201 (6), 1205.

    39. [39]

      (39) Heeger, A. J. Nature of the Primary Photoexcitations in Poly(arylenevinylenes): Bound Neutral Excitons or Charged Polaron Pairs, in Primary Photoexcitations in Conjugated Polymers: Molecular Excitation Versus Semiconductor Band Model. Singapore and River Edge: NJ, 1997; pp 20-47.

    40. [40]

      (40) Seo, J. H.; Jin, Y.; Brzezinski, J. Z.; Walker, B.; Nguyen, T. Q. ChemPhysChem 2009, 10 (7), 1023.

    41. [41]

      (41) Li, Y.; Zou, L. Y.; Ren, A. M.; Feng, J. K. Comput. Theor. Chem. 2012, 981, 14. doi: 10.1016/j.comptc.2011.11.021

    42. [42]

      (42) Xu, X.; Zhu, E.; Bian, L.; Wang, Z.; Wang, J.; Zhuo, Z.; Wang, J.; Zhang, F.; Tang, W. Chin. Sci. Bull. 2012, 57 (9), 970. doi: 10.1007/s11434-011-4964-3

    43. [43]

      (43) Tang, W.; Hai, J.; Dai, Y.; Huang, Z.; Lu, B.; Yuan, F.; Tang, J.; Zhang, F. Sol. Energy Mater. Sol. Cells 2010, 94 (12), 1963. doi: 10.1016/j.solmat.2010.07.003

    44. [44]

      (44) Wang, J. F.; Feng, J. K.; Ren, A. M.; Liu, X. D.; Ma, Y. G.; Lu, P.; Zhang, H. X. Macromolecules 2004, 37 (9), 3451. doi: 10.1021/ma035725c

    45. [45]

      (45) Li, Q.; Yu, J. S.; Li, L.; Jiang, Y. D.; Suo, F.; Zhan, X.W. Acta Phys. -Chim. Sin. 2008, 24, 133. [李青, 于军胜, 李璐, 蒋亚东, 锁钒, 占肖卫, 物理化学学报, 2008, 24, 133.] doi: 10.3866/PKU.WHXB20080123

    46. [46]

      (46) Hay, P. J. J. Phys. Chem. A 2002, 106 (8), 1634. doi: 10.1021/jp013949w

    47. [47]

      (47) Curioni, A.; Andreoni, W.; Treusch, R.; Himpsel, F. J.; Haskal, E.; Seidler, P.; Heske, C.; Kakar, S.; van Buuren, T.; Terminello, L. J. Appl. Phys. Lett. 1998, 72 (13), 1575. doi: 10.1063/1.121119

    48. [48]

      (48) Hong, S. Y.; Kim, D. Y.; Kim, C. Y.; Hoffmann, R. Macromolecules 2001, 34 (18), 6474. doi: 10.1021/ma010254k

    49. [49]

      (49) Liu, X. J.; Lin, T.; Gao, S.W.; Ma, R.; Zhang, J. Y.; Cai, X. C.; Yang, L.; Teng, F. Acta Phys. -Chim. Sin. 2012, 28, 1337. [刘小君, 林涛, 高少伟, 马睿, 张晋悦, 蔡新晨, 杨磊, 滕枫. 物理化学学报, 2012, 28, 1337.] doi: 10.3866/PKU.WHXB201204092


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    17. [17]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

Metrics
  • PDF Downloads(480)
  • Abstract views(1172)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return