Citation:
	            
		            ZHANG  Xuan-Xuan, RAN  Fen, FAN  Hui-Li, KONG  Ling-Bin, KANG  Long. Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO2 Composites[J]. Acta Physico-Chimica Sinica,
							;2014, 30(5): 881-890.
						
							doi:
								10.3866/PKU.WHXB201403061
						
					
				
					
				
	        
- 
	                	
This article describes the electrochemical performance of a novel interconnected porous carbon/ MnO2 (IPC/MnO2) composite prepared by in situ self-limiting deposition under hydrothermal condition. The morphology and structure were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), and the electrochemical behavior was investigated using cyclic voltammetry (CV), charge-discharge tests, electrochemical impedance spectroscopy (EIS), and cycle life tests. The results showed that MnO2 grew homogeneously on the IPC surface, forming a hierarchical microstructure. The MnO2 had a typical K-Birnessite-type crystal structure and the MnO2 content was about 34%(w). At high synthetic temperatures, the MnO2 particles on the IPC surface were smaller. The prepared electrode material exhibited a od electrochemical capacitance performance. As the reaction temperature increased, the specific capacitance of the IPC/MnO2 composite first increased and then remained constant. The IPC/MnO2 composite synthesized at 100 ℃ had the maximum specific capacitance, 411 F·g-1, in a three-electrode system. An asymmetric supercapacitor was constructed with the IPC/MnO2 composite as the positive electrode and activated carbon (AC) as the negative electrode, in a 1 mol·L-1 Na2SO4 electrolyte. The results showed that the corresponding potential window increased from 1 to 1.8 V. The maximum specific capacitance of the asymmetric supercapacitor was 86 F·g-1 and a od rate capability was achieved.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744
 - 
			
                    [2]
                
			
(2) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
 - 
			
                    [3]
                
			
(3) Wen, C. M.; Wen, Z. Y.; You, Z.; Wang, X. F. Chin. J. Chem. Phys. 2012, 25, 209. doi: 10.1088/1674-0068/25/02/209-213
 - 
			
                    [4]
                
			
(4) Wang, X. F.; You, Z.; Ruan, D. B. Chin. J. Chem. Phys. 2005, 18, 635.
 - 
			
                    [5]
                
			
(5) Kim, I. H.; Kim, K. B. J. Electrochem. Soc. 2006, 153, A383.
 - 
			
                    [6]
                
			
(6) Nagarajan, N.; Cheong, M.; Zhitomirsky, I. Mater. Chem. Phys. 2007, 103 (1), 47. doi: 10.1016/j.matchemphys.2007.01.005
 - 
			
                    [7]
                
			
(7) Yu, H. M.; Zheng, W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25 (11), 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25 (11), 2186.] doi: 10.3866/PKU.WHXB20091113
 - 
			
                    [8]
                
			
(8) Fischer, A. E.; Pettigrew, K. A.; Rolison, D. R.; Stroud, R. M.; Long, J.W. Nano Lett. 2007, 7 (2), 281.
 - 
			
                    [9]
                
			
(9) Sharma, R. K.; Oh, H. S.; Shul, Y. G.; Kim, H. J. Power Sources 2007, 173, 1024. doi: 10.1016/j.jpowsour.2007.08.076
 - 
			
                    [10]
                
			
(10) Huang, H. J.; Wang, X. Nanoscale 2011, 3, 3185. doi: 10.1039/c1nr10229j
 - 
			
                    [11]
                
			
(11) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j
 - 
			
                    [12]
                
			
(12) Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. Carbon 2013, 60, 109. doi: 10.1016/j.carbon.2013.03.062
 - 
			
                    [13]
                
			
(13) Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Carbon 2010, 48, 3825.
 - 
			
                    [14]
                
			
(14) Song, M. K.; Cheng, S.; Chen, H. Y.; Qin, W. T.; Nam, K.W.; Xu, S. C.; Yang, X. Q.; Bongiorno, A.; Lee, J.; Bai, J. M.; Tyson, T. A.; Cho, J.; Liu, M. L. Nano Lett. 2012, 12, 3483. doi: 10.1021/nl300984y
 - 
			
                    [15]
                
			
(15) Bordjiba, T.; Belanger, D. J. Electrochem. Soc. 2009, 156, A378.
 - 
			
                    [16]
                
			
(16) Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J.W.; Han, S. M.; Cui, Y. Nano Lett. 2010, 10, 708.
 - 
			
                    [17]
                
			
(17) Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, 8904. doi: 10.1021/nn203085j
 - 
			
                    [18]
                
			
(18) Prasad, K. R.; Miura, N. J. Power Sources 2004, 135, 354. doi: 10.1016/j.jpowsour.2004.04.005
 - 
			
                    [19]
                
			
(19) Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Carbon 2009, 47, 3371. doi: 10.1016/j.carbon.2009.08.001
 - 
			
                    [20]
                
			
(20) Yang, Y. J.; Liu, E. H.; Li, L. M.; Huang, Z. Z.; Shen, H. J.; Xiang, X. X. J. Alloy. Compd. 2009, 487, 564.
 - 
			
                    [21]
                
			
(21) Yan, J.; Fan, Z.; Wei, T.; Qie, Z.; Wang, S.; Zhang, M. Mater. Sci. Eng. B 2008, 151, 174. doi: 10.1016/j.mseb.2008.05.018
 - 
			
                    [22]
                
			
(22) Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t
 - 
			
                    [23]
                
			
(23) Zhang, J.; Jiang, J.; Zhao, X. S. J. Phys. Chem. C 2011, 115, 6448. doi: 10.1021/jp200724h
 - 
			
                    [24]
                
			
(24) Jin, X. B.; Zhou, W. Z.; Zhang, S.W.; Chen, G. Z. Small 2007, 3, 1513.
 - 
			
                    [25]
                
			
(25) Tan, Y. T.; Ran, F.; Kong, L. B.; Liu, J.; Kang, L. Synthetic Metals 2012, 162, 114. doi: 10.1016/j.synthmet.2011.11.020
 - 
			
                    [26]
                
			
(26) Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L.; Li, X. H.; Walsh, F. C. J. Electrochem. Soc. 2012, 159, A1.
 - 
			
                    [27]
                
			
(27) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223
 - 
			
                    [28]
                
			
(28) Khomenko, V.; Raymundo-Pinero, E.; Beguin, F. J. Power Sources 2006, 153, 183. doi: 10.1016/j.jpowsour.2005.03.192
 - 
			
                    [29]
                
			
(29) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 300.
 - 
			
                    [30]
                
			
(30) Song, X. C.; Zhao, Y.; Zheng, Y. F. Cryst. Growth Des. 2007, 7, 159. doi: 10.1021/cg060536h
 - 
			
                    [31]
                
			
(31) Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Adv. Mater. 2004, 16, 918.
 - 
			
                    [32]
                
			
(32) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184. doi: 10.1021/cm049649j
 - 
			
                    [33]
                
			
(33) Zolfaghari, A.; Naderi, H. R.; Mortaheb, H. R. J. Electroanal. Chem. 2013, 697, 60.
 - 
			
                    [34]
                
			
(34) Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Adv. Mater. 2010, 22, E235.
 - 
			
                    [35]
                
			
(35) Qu, Q. T.; Zhang, P.; Wang, B.; Chen, Y. H.; Tian, S.; Wu, Y. P.; Holze, R. J. Phys. Chem. C 2009, 113, 14020.
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063
 - 
				[2]
				
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
 - 
				[3]
				
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
 - 
				[4]
				
Yijing GU , Huan PANG , Rongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186
 - 
				[5]
				
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
 - 
				[6]
				
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
 - 
				[7]
				
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
 - 
				[8]
				
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
 - 
				[9]
				
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
 - 
				[10]
				
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
 - 
				[11]
				
Huimin Liu , Kezhi Li , Xin Zhang , Xuemin Yin , Qiangang Fu , Hejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026
 - 
				[12]
				
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
 - 
				[13]
				
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
 - 
				[14]
				
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
 - 
				[15]
				
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
 - 
				[16]
				
Yingtong FAN , Yujin YAO , Shouhao WAN , Yihang SHEN , Xiang GAO , Cuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043
 - 
				[17]
				
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066
 - 
				[18]
				
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
 - 
				[19]
				
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
 - 
				[20]
				
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(1569)
 - Abstract views(1100)
 - HTML views(49)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: