Citation: ZHANG Xuan-Xuan, RAN Fen, FAN Hui-Li, KONG Ling-Bin, KANG Long. Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO2 Composites[J]. Acta Physico-Chimica Sinica, ;2014, 30(5): 881-890. doi: 10.3866/PKU.WHXB201403061 shu

Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO2 Composites

  • Received Date: 8 November 2013
    Available Online: 6 March 2014

    Fund Project:

  • This article describes the electrochemical performance of a novel interconnected porous carbon/ MnO2 (IPC/MnO2) composite prepared by in situ self-limiting deposition under hydrothermal condition. The morphology and structure were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), and the electrochemical behavior was investigated using cyclic voltammetry (CV), charge-discharge tests, electrochemical impedance spectroscopy (EIS), and cycle life tests. The results showed that MnO2 grew homogeneously on the IPC surface, forming a hierarchical microstructure. The MnO2 had a typical K-Birnessite-type crystal structure and the MnO2 content was about 34%(w). At high synthetic temperatures, the MnO2 particles on the IPC surface were smaller. The prepared electrode material exhibited a od electrochemical capacitance performance. As the reaction temperature increased, the specific capacitance of the IPC/MnO2 composite first increased and then remained constant. The IPC/MnO2 composite synthesized at 100 ℃ had the maximum specific capacitance, 411 F·g-1, in a three-electrode system. An asymmetric supercapacitor was constructed with the IPC/MnO2 composite as the positive electrode and activated carbon (AC) as the negative electrode, in a 1 mol·L-1 Na2SO4 electrolyte. The results showed that the corresponding potential window increased from 1 to 1.8 V. The maximum specific capacitance of the asymmetric supercapacitor was 86 F·g-1 and a od rate capability was achieved.

  • 加载中
    1. [1]

      (1) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335, 1326. doi: 10.1126/science.1216744

    2. [2]

      (2) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297

    3. [3]

      (3) Wen, C. M.; Wen, Z. Y.; You, Z.; Wang, X. F. Chin. J. Chem. Phys. 2012, 25, 209. doi: 10.1088/1674-0068/25/02/209-213

    4. [4]

      (4) Wang, X. F.; You, Z.; Ruan, D. B. Chin. J. Chem. Phys. 2005, 18, 635.

    5. [5]

      (5) Kim, I. H.; Kim, K. B. J. Electrochem. Soc. 2006, 153, A383.

    6. [6]

      (6) Nagarajan, N.; Cheong, M.; Zhitomirsky, I. Mater. Chem. Phys. 2007, 103 (1), 47. doi: 10.1016/j.matchemphys.2007.01.005

    7. [7]

      (7) Yu, H. M.; Zheng, W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25 (11), 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25 (11), 2186.] doi: 10.3866/PKU.WHXB20091113

    8. [8]

      (8) Fischer, A. E.; Pettigrew, K. A.; Rolison, D. R.; Stroud, R. M.; Long, J.W. Nano Lett. 2007, 7 (2), 281.

    9. [9]

      (9) Sharma, R. K.; Oh, H. S.; Shul, Y. G.; Kim, H. J. Power Sources 2007, 173, 1024. doi: 10.1016/j.jpowsour.2007.08.076

    10. [10]

      (10) Huang, H. J.; Wang, X. Nanoscale 2011, 3, 3185. doi: 10.1039/c1nr10229j

    11. [11]

      (11) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j

    12. [12]

      (12) Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J. Carbon 2013, 60, 109. doi: 10.1016/j.carbon.2013.03.062

    13. [13]

      (13) Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Carbon 2010, 48, 3825.

    14. [14]

      (14) Song, M. K.; Cheng, S.; Chen, H. Y.; Qin, W. T.; Nam, K.W.; Xu, S. C.; Yang, X. Q.; Bongiorno, A.; Lee, J.; Bai, J. M.; Tyson, T. A.; Cho, J.; Liu, M. L. Nano Lett. 2012, 12, 3483. doi: 10.1021/nl300984y

    15. [15]

      (15) Bordjiba, T.; Belanger, D. J. Electrochem. Soc. 2009, 156, A378.

    16. [16]

      (16) Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J.W.; Han, S. M.; Cui, Y. Nano Lett. 2010, 10, 708.

    17. [17]

      (17) Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, 8904. doi: 10.1021/nn203085j

    18. [18]

      (18) Prasad, K. R.; Miura, N. J. Power Sources 2004, 135, 354. doi: 10.1016/j.jpowsour.2004.04.005

    19. [19]

      (19) Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Carbon 2009, 47, 3371. doi: 10.1016/j.carbon.2009.08.001

    20. [20]

      (20) Yang, Y. J.; Liu, E. H.; Li, L. M.; Huang, Z. Z.; Shen, H. J.; Xiang, X. X. J. Alloy. Compd. 2009, 487, 564.

    21. [21]

      (21) Yan, J.; Fan, Z.; Wei, T.; Qie, Z.; Wang, S.; Zhang, M. Mater. Sci. Eng. B 2008, 151, 174. doi: 10.1016/j.mseb.2008.05.018

    22. [22]

      (22) Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. ACS Nano 2010, 4, 2822. doi: 10.1021/nn901311t

    23. [23]

      (23) Zhang, J.; Jiang, J.; Zhao, X. S. J. Phys. Chem. C 2011, 115, 6448. doi: 10.1021/jp200724h

    24. [24]

      (24) Jin, X. B.; Zhou, W. Z.; Zhang, S.W.; Chen, G. Z. Small 2007, 3, 1513.

    25. [25]

      (25) Tan, Y. T.; Ran, F.; Kong, L. B.; Liu, J.; Kang, L. Synthetic Metals 2012, 162, 114. doi: 10.1016/j.synthmet.2011.11.020

    26. [26]

      (26) Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L.; Li, X. H.; Walsh, F. C. J. Electrochem. Soc. 2012, 159, A1.

    27. [27]

      (27) Li, L.; He, Y. Q.; Chu, X. F.; Li, Y. M.; Sun, F. F.; Huang, H. Z. Acta Phys. -Chim. Sin. 2013, 29, 1681. [李乐, 贺蕴秋, 储晓菲, 李一鸣, 孙芳芳, 黄河洲. 物理化学学报, 2013, 29, 1681.] doi: 10.3866/PKU.WHXB201305223

    28. [28]

      (28) Khomenko, V.; Raymundo-Pinero, E.; Beguin, F. J. Power Sources 2006, 153, 183. doi: 10.1016/j.jpowsour.2005.03.192

    29. [29]

      (29) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 300.

    30. [30]

      (30) Song, X. C.; Zhao, Y.; Zheng, Y. F. Cryst. Growth Des. 2007, 7, 159. doi: 10.1021/cg060536h

    31. [31]

      (31) Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Adv. Mater. 2004, 16, 918.

    32. [32]

      (32) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184. doi: 10.1021/cm049649j

    33. [33]

      (33) Zolfaghari, A.; Naderi, H. R.; Mortaheb, H. R. J. Electroanal. Chem. 2013, 697, 60.

    34. [34]

      (34) Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Adv. Mater. 2010, 22, E235.

    35. [35]

      (35) Qu, Q. T.; Zhang, P.; Wang, B.; Chen, Y. H.; Tian, S.; Wu, Y. P.; Holze, R. J. Phys. Chem. C 2009, 113, 14020.


  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

Metrics
  • PDF Downloads(1569)
  • Abstract views(907)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return