Citation: LIU Jian-Xin, WANG Yun-Fang, WANG Ya-Wen, FAN Cai-Mei. Synthesis, Regeneration and Photocatalytic Activity under Visible-Light Irradiation of Ag/Ag3PO4/g-C3N4 Hybrid Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 729-737. doi: 10.3866/PKU.WHXB201402243
-
Ag/Ag3PO4/g-C3N4 (g denotes graphitic) was synthesized via an anion-exchange precipitation method, and its photocatalytic activity under visible light and regeneration with H2O2 and NaNH4HPO4 were investigated. The structural characteristics were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The XRD results showed that the structure of the regenerated catalyst was unchanged. The FESEM and UV-Vis absorption spectroscopy results showed that the Ag/Ag3PO4/g-C3N4 catalyst was composed of Ag3PO4 and g-C3N4. XPS showed that a small amount of Ag particles were present on the catalyst surface. The photocatalytic activity was evaluated using phenol degradation under visible light (λ>420 nm) and the photocatalytic mechanism was discussed based on the active species during the photocatalytic process and the band structure. Experimental studies showed that the photocatalytic activity of the as-prepared Ag/Ag3PO4/g-C3N4 was higher than those of pure Ag3PO4 and g-C3N4. The high photocatalytic performance of the Ag/Ag3PO4/g-C3N4 composite can be attributed to the synergistic effect of Ag3PO4, g-C3N4, and a small amount of Ag0. Regeneration using H2O2 and NaNH4HPO4? 4H2O fully restored the photoactivity of the catalyst, showing that this green regeneration method could make Ag/Ag3PO4/g-C3N4 an environmentally friendly catalyst for practical applications.
-
Keywords:
-
Silver phosphate
, - g-C3N4,
- Metallic silver,
- Catalyst regeneration,
- Phenol,
- Photocatalysis
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0
-
[2]
(2) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95 (1), 49. doi: 10.1021/cr00033a003
-
[3]
(3) Chen,W.; Dong, X. F.; Chen, Z. S.; Chen, S. Z.; Lin,W. M. Acta Phys. -Chim. Sin. 2009, 25 (6), 1107. [陈威, 董新法, 陈之善, 陈胜洲, 林维明. 物理化学学报, 2009, 25 (6), 1107.]d oi: 10.3866/PKU.WHXB20090624
-
[4]
(4) Khaselev, O.; Turner, J. A. Science 1998, 280 (5362), 425. doi: 10.1126/science.280.5362.425
-
[5]
(5) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001, 414 (6864), 625. doi: 10.1038/414625a
-
[6]
(6) Yang, Y. Q.; Zhang, G. K.; Yu, S. J.; Shen, X. Chem. Eng. J. 2010, 162 (1), 171. doi: 10.1016/j.cej.2010.05.024
-
[7]
(7) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys.-Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.] doi: 10.3866/PKU.WHXB20081123
-
[8]
(8) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012, 28 (9), 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012, 28 (9), 2214.] doi: 10.3866/PKU.WHXB201206122
-
[9]
(9) Zhang, N.; Zhang, Y. H.; Xu, Y. J. Nanoscale 2012, 4, 5792. doi: 10.1039/c2nr31480k
-
[10]
(10) Zhang, N.; Liu, S. Q.; Xu, Y. J. Nanoscale 2012, 4, 2227. doi: 10.1039/c2nr00009a
-
[11]
(11) Yang, M. Q.; Xu, Y. J. Phys. Chem. Chem. Phys. 2013, 15, 19102. doi: 10.1039/c3cp53325e
-
[12]
(12) Yang, M. Q.;Weng, B.; Xu, Y. J. J. Mater. Chem. A 2014, 2, 1710. doi: 10.1039/c3ta14370h
-
[13]
(13) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo,W. J.; Li, Z. S.; Liu, Y.;Withers, R. L. Nat. Mater. 2010, 9 (7), 559. doi:1 0.1038/nmat2780
-
[14]
(14) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317
-
[15]
(15) Asahi, R.; Morikiwa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. doi: 10.1126/science.1061051
-
[16]
(16) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121 (49), 11459. doi: 10.1021/ja992541y
-
[17]
(17) Wang, Y. F.; Li, X. L.;Wang, Y.W.; Fan, C. M. J. Solid State Chem. 2013, 202, 51. doi: 10.1016/j.jssc.2013.03.013
-
[18]
(18) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b
-
[19]
(19) Yao,W. F.; Zhang, B.; Huang, C. P.; Ma, C.; Song, X. L.; Xu, Q. J. J. Mater. Chem. 2012, 22, 4050. doi: 10.1039/c2jm14410g
-
[20]
(20) Shen, K.; ndal, M. A.; Siddique, R. G.; Shi, S.;Wang, S. Q.; Sun, J. B.; Xu, Q. Y. Chin. J. Catal. 2014, 35 (1), 78. doi: 10.1016/S1872-2067(12)60712-8
-
[21]
(21) Zhang, L. L.; Zhang, H. C.; Huang, H.; Yang, L.; Kang, Z. H. New J. Chem. 2012, 36 (8), 1541. doi: 10.1039/c2nj40206h
-
[22]
(22) Wang, H.; Bai, Y. S.; Yang, J. T.; Lang, X. F.; Li, J. H.; Guo, L. Chem. Eur. J. 2012, 18 (18), 5524. doi: 10.1002/chem.v18.18
-
[23]
(23) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27), 4467.
-
[24]
(24) Shahbaz, M.; Urano, S.; LeBreton, P. R.; Rossman, M. A.; Hosmane, R. S.; Leonard, N. J. J. Am. Chem. Soc. 1984, 106 (10), 2805. doi: 10.1021/ja00322a014
-
[25]
(25) Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86 (1), 123. doi: 10.1016/j.matchemphys.2004.02.023
-
[26]
(26) Hu, C.; Lan, Y. Q.; Qu, J. H.; Hu, X. X.;Wang, A. M. J. Phys. Chem. B 2006, 110 (9), 4066. doi: 10.1021/jp0564400
-
[27]
(27) Lopez-Salido, I.; Lim, D. C.; Kim, Y. D. Surf. Sci. 2005, 588 (1-3), 6.
-
[28]
(28) Ng, H. N.; Calvo, C.; Faggiani, R. Acta Cryst. B 1978, 34 (3), 898. doi: 10.1107/S0567740878014570
-
[29]
(29) Cao, J.; Luo, B. D.; Lin, H. L.; Xu, B. Y.; Chen, S. F. J. Hazard. Mater. 2012, 217 -218, 107.
-
[30]
(30) Khan, A.; Qamar, M.; Muneer, M. Chem. Phys. Lett. 2012, 519 -520, 54.
-
[31]
(31) Zhang, F. J.; Xie, F. Z.; Zhu, S. F.; Liu, J.; Zhang, J.; Mei, S. F.; Zhao,W. Chem. Eng. J. 2013, 228, 435. doi: 10.1016/j.cej.2013.05.027
-
[32]
(32) Liu, J. J.; Fu, X. L.; Chen, S. F.; Zhu, Y. F. Appl. Phys. Lett. 2011, 99 (19), 191903/1. doi: 10.1063/1.3660319
-
[33]
(33) Chen, L. C.; Chen, C. K.;Wei, S. L.; Bhusari, D. M.; Chen, K. H.; Chen, Y. F.; Jong, Y. C.; Huang, Y. S. Appl. Phys. Lett. 1998, 72 (19), 2463. doi: 10.1063/1.121383
-
[34]
(34) Zhang, Q. H.; Gao, L.; Guo, J. K. Appl. Catal. B 2000, 26 (3), 207. doi: 10.1016/S0926-3373(00)00122-3
-
[35]
(35) Liu, Y. P.; Fang, L.; Lu, H. D.; Liu, L. J.;Wang, H.; Hu, C. Z. Catal. Commun. 2012, 17, 200. doi: 10.1016/j.catcom.2011.11.001
-
[36]
(36) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. J. Am. Chem. Soc. 2011, 133 (17), 6490. doi: 10.1021/ja2002132
-
[37]
(37) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. Z. J. Phys. Chem. C 2011, 115 (18), 9136. doi: 10.1021/jp2009989
-
[38]
(38) Li, G. T.;Wong, K. H.; Zhang, X.W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.;Wong, P. K. Chemosphere 2009, 76 (9), 1185. doi: 10.1016/j.chemosphere.2009.06.027
-
[39]
(39) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334 (1-2), 116.
-
[40]
(40) Kumar, S.; Surendar, T.; Baruahb, A.; Shanker, V. J. Mater. Chem. A 2013, 1, 5333. doi: 10.1039/c3ta00186e
-
[41]
(41) Oliveira, H. G.; Nery, D. C.; Lon , C. Appl. Catal. B 2010, 93 (3-4), 205.
-
[42]
(42) Sobczy ski, A.; Duczmal, .; Zmudzi ski,W. J. Mol. Catal. AChem. 2004, 213 (2), 225. doi: 10.1016/j.molcata.2003.12.006
-
[43]
(43) Peiró, A. M.; Ayllón, J. A.; Peral, J.; Doménech, X. Appl. Catal. B 2001, 30 (3-4), 359.
-
[44]
(44) ettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45 (27) 4467.
-
[45]
(45) Liu, Y. F.; Zhu, Y. Y.; Xu, J.; Bai, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2013, 142 -143, 561.
-
[46]
(46) Ma,W.; Cheng, Z. H.; Gao, Z. X.;Wang, R.;Wang, B. D.; Sun, Q. Chem. Eng. J. 2014, 241, 167. doi: 10.1016/j.cej.2013.12.031
-
[47]
(47) Lin, H. L.; Cao, J.; Luo, B. D.; Xu, B. Y.; Chen, S. F. Catal. Commun. 2012, 21, 91. doi: 10.1016/j.catcom.2012.02.008
-
[1]
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[3]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[4]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[5]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[6]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[7]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[8]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[12]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[13]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[17]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[18]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[19]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(862)
- Abstract views(1045)
- HTML views(59)