Citation: MEI Qun-Bo, WENG Jie-Na, TONG Bi-Hai, TIAN Ru-Qiang, JIANG Yuan-Zhi, HUA Qing-Fang, HUANG Wei. Progress in the Application of Diazine Compounds in Optoelectronic Functional Materials[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 589-607. doi: 10.3866/PKU.WHXB201402182 shu

Progress in the Application of Diazine Compounds in Optoelectronic Functional Materials

  • Received Date: 4 December 2013
    Available Online: 18 February 2014

    Fund Project:

  • As a new and developing field, organic electronics is attracting much attention and has contributed greatly to progress in science and technology over the past few decades. Satisfactory results have been achieved for the use of organic optoelectronic materials in various electronic devices. As the most basic component used in electronic devices, organic optoelectronic materials have attracted an increasing amount of attention. Diazine compounds have excellent optical and electrical properties and are some of the most researched compounds in the photoelectric material field. They contain a benzene ring in which two of the C―H fragments have been replaced by isolobal nitrogen. Three isomers: pyridazine (1,2-diazine), pyrimidine (1,3-diazine), and pyrazine (1,4-diazine) exist. Because of the relative position of two of the N atoms, they can be modified in different positions and can be effectively used to control the electronic structure of the material. Therefore, they have received widespread attention. In this review, a summary of recent research progress into diazine compounds in different optoelectronic functional material application fields is provided. Specifically, photovoltaic materials, thin film semiconductor materials, liquid crystal materials, chemosensor materials, and electroluminescent materials are discussed. Finally, existing important problems and the future development of diazine compounds are also discussed.

  • 加载中
    1. [1]

      (1) Chaskar, A.; Chen, H. F.;Wong, K. T. Adv. Mater. 2011, 23 (34), 3876. doi: 10.1002/adma.v23.34

    2. [2]

      (2) Duan, L. A.; Qiao, J. A.; Sun, Y. D.; Qiu, Y. Adv. Mater. 2011, 23 (9), 1137. doi: 10.1002/adma.201003816

    3. [3]

      (3) Tao, Y. T.; Yang, C. L.; Qin, J. G. Chem. Soc. Rev. 2011, 40 (5), 2943. doi: 10.1039/c0cs00160k

    4. [4]

      (4) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107 (4), 953. doi: 10.1021/cr050143+

    5. [5]

      (5) Wang, C. L.; Dong, H. L.; Hu,W. P.; Liu, Y. Q.; Zhu, D. B. Chem. Rev. 2012, 112 (4), 2208. doi: 10.1021/cr100380z

    6. [6]

      (6) Hains, A.W.; Liang, Z. Q.;Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110 (11), 6689. doi: 10.1021/cr9002984

    7. [7]

      (7) Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15 (1), 94. doi: 10.1039/b413249c

    8. [8]

      (8) Su, S. J.; Cai, C.; Kido, J. Chem. Mater. 2011, 23 (2), 274. doi: 10.1021/cm102975d

    9. [9]

      (9) Aizawa, N.; Pu, Y. J.; Sasabe, H.; Kido, J. Org. Electron. 2012, 13 (11), 2235. doi: 10.1016/j.orgel.2012.06.036

    10. [10]

      (10) Xu, X. J.; Chen, S. Y.; Yu, G.; Di, C. A.; You, H.; Ma, D. G.; Liu, Y. Q. Adv. Mater. 2007, 19 (9), 1281.

    11. [11]

      (11) Gao, Z. Q.; Mi, B. X.; Tam, H. L.; Cheah, K.W.; Chen, C. H.; Wong, M. S.; Lee, S. T.; Lee, C. S. Adv. Mater. 2008, 20 (4),774.

    12. [12]

      (12) Lin, L. Y.; Tsai, C. H.;Wong, K. T.; Huang, T.W.;Wu, C. C.; Chou, S. H.; Lin, F.; Chen, S. H.; Tsai, A. I. J. Mater. Chem.2011, 21 (16), 5950.

    13. [13]

      (13) Chiu, S.W.; Lin, L. Y.; Lin, H.W.; Chen, Y. H.; Huang, Z. Y.; Lin, Y. T.; Lin, F.; Liu, Y. H.;Wong, K. T. Chem. Commun. 2012, 48 (13), 1857. doi: 10.1039/c2cc16390j

    14. [14]

      (14) Wu, C. H.; Pan, T. Y.; Hong, S. H.;Wang, C. L.; Kuo, H. H.; Chu, Y. Y.; Diau, E.; Lin, C. Y. Chem. Commun. 2012, 48 (36), 4329. doi: 10.1039/c2cc30892d

    15. [15]

      (15) Yasuda, T.; Sakai, Y.; Aramaki, S.; Yamamoto, T. Chem. Mater. 2005, 17 (24), 6060. doi: 10.1021/cm051561y

    16. [16]

      (16) Ortiz, R. P.; Casado, J.; Hernandez, V.; Navarrete, J.; Letizia, J. A.; Ratner, M. A.; Facchetti, A.; Marks, T. J. Chem. -Eur. J. 2009, 15 (20), 5023. doi: 10.1002/chem.v15: 20

    17. [17]

      (17) Kojima, T.; Nishida, J.; Tokito, S.; Tada, H.; Yamashita, Y. Chem. Commun. 2007, (14), 1430.

    18. [18]

      (18) Schmitt, V.; Glang, S.; Preis, J.; Detert, H. Sens. Lett. 2008, 6 (4), 524. doi: 10.1166/sl.2008.420

    19. [19]

      (19) Achelle, S.; Barsella, A.; Baudequin, C.; Caro, B.; Guen, F. J. Org. Chem. 2012, 77 (8), 4087. doi: 10.1021/jo3004919

    20. [20]

      (20) Weng, J.; Mei, Q.; Ling, Q.; Fan, Q.; Huang,W. Tetrahedron 2012, 68 (14), 3129. doi: 10.1016/j.tet.2011.12.071

    21. [21]

      (21) Weng, J.; Mei, Q.; Zhang, B.; Jiang, Y.; Tong, B.; Fan, Q.; Ling, Q.; Huang,W. Analyst 2013, 138 (21), 6607. doi: 10.1039/c3an01214j

    22. [22]

      (22) Achelle, S.; Ple, N. Curr. Org. Synth. 2012, 9 (2), 163. doi: 10.2174/157017912799829067

    23. [23]

      (23) Ge, G. P.; He, J.; Guo, H. Q.;Wang, F. Z.; Zou, D. C. J. Organomet. Chem. 2009, 694 (19), 3050. doi: 10.1016/j. jorganchem.2009.05.037

    24. [24]

      (24) Lowry, M. S.; Bernhard, S. Chem. -Eur. J. 2006, 12 (31), 7970.

    25. [25]

      (25) Brown, D.; Muranjan, S.; Jang, Y.; Thummel, R. Org. Lett. 2002, 4 (8), 1253. doi: 10.1021/ol0172572

    26. [26]

      (26) Achelle, S.; Ple, N.; Turck, A. RSC Adv. 2011, 1 (3), 364. doi: 10.1039/c1ra00207d

    27. [27]

      (27) Wu,W.; Xu, H. B.; Shen, D. Z.; Qiu, T.; Fan, L. J. J. Polym. Sci. Pol. Chem. 2013, 51 (7), 1636. doi: 10.1002/pola.26535

    28. [28]

      (28) Hadad, C.; Fiol-Petit, C.; Cornec, A.; Dupas, G.; Ramondenc, Y.; Plé, N. Heterocycles 2010, 81 (6), 1445. doi: 10.3987/COM-10-11934

    29. [29]

      (29) Do, J.; Huh, J.; Kim, E. Langmuir 2009, 25 (16), 9405. doi:10.1021/la901476q

    30. [30]

      (30) Paschke, R.; Rosenfeld, U.; Zaschke, H. Liq . Cryst. 1992, 11 (1), 145. doi: 10.1080/02678299208028978

    31. [31]

      (31) Achelle, S.; Ple, N.; Kreher, D.; Mathevet, F.; Turck, A.; Attias, A. J. Heterocycles 2008, 75 (2), 357. doi: 10.3987/COM-07-11220

    32. [32]

      (32) Achelle, S.; Plé, N.; Turck, A.; Bouillon, J.; Portella, C. J. Heterocycl. Chem. 2006, 43 (5), 1243. doi: 10.1002/jhet.v43: 5

    33. [33]

      (33) Wild, J. H.; Bartle, K.; Kirkman, N. T.; Kelly, S. M.; O'Neill, M.; Stirner, T.; Tuffin, R. P. Chem. Mater. 2005, 17 (25), 6354. doi: 10.1021/cm051682y

    34. [34]

      (34) Park, Y. S.; Kim, D.; Lee, H.; Moon, B. Org. Lett. 2006, 8 (21), 4699. doi: 10.1021/ol061711q

    35. [35]

      (35) Mi, B. X.;Wang, P. F.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Hong, H. L.; Chen, X. M.;Wong, M. S.; Xia, P. F.; Cheah, K. W.; Chen, C. H.; Huang,W. Adv. Mater. 2009, 21 (3), 339. doi: 10.1002/adma.v21: 3

    36. [36]

      (36) Yang, C. H.; Cheng, Y. M.; Chi, Y.; Hsu, C. J.; Fang, F. C.; Wong, K. T.; Chou, P. T.; Chang, C. H.; Tsai, M. H.;Wu, C. C. Angew. Chem. Int. Edit. 2007, 46 (14), 2418.

    37. [37]

      (37) Fang, Y.; Li, Y. H.;Wang, S. J.; Meng, Y. Z.; Peng, J. B.; Wang, B. Synth. Met. 2010, 160 (21-22), 2231. doi: 10.1016/j.synthmet.2010.07.035

    38. [38]

      (38) mpper, R.; Mair, H. J.; Polborn, K. Synthesis-Stuttgart 1997, No. 6, 696.

    39. [39]

      (39) Kanbara, T.; Kushida, T.; Saito, N.; Kuwajima, I.; Kubota, K.; Yamamoto, T. Chem. Lett. 1992, 21 (4), 583.

    40. [40]

      (40) Wong, K. T.; Hung, T. S.; Lin, Y. T.;Wu, C. C.; Lee, G. H.; Peng, S. M.; Chou, C. H.; Su, Y. Org. Lett. 2002, 4 (4), 513. doi: 10.1021/ol017066z

    41. [41]

      (41) Wu, C. C.; Lin, Y. T.; Chiang, H. H.; Cho, T. Y.; Chen, C.W.; Wong, K. T.; Liao, Y. L.; Lee, G. H.; Peng, S. M. Appl. Phys. Lett. 2002, 81 (4), 577. doi: 10.1063/1.1493669

    42. [42]

      (42) Gunathilake, S. S.; Magurudeniya, H. D.; Huang, P.; Nguyen, H.; Rainbolt, E. A.; Stefan, M. C.; Biewer, M. C. Polym. Chem. 2013, 4 (20), 5216. doi: 10.1039/c3py00137g

    43. [43]

      (43) Weng, J.; Mei, Q.; Fan, Q.; Ling, Q.; Tong, B.; Huang,W. RSC Adv. 2013, 3 (44), 21877. doi: 10.1039/c3ra43631d

    44. [44]

      (44) Aldred, M. P.; Eastwood, A. J.; Kelly, S. M.; Vlachos, P.; Contoret, A.; Farrar, S. R.; Mansoor, B.; O'Neill, M.; Tsoi,W. C. Chem. Mater. 2004, 16 (24), 4928. doi: 10.1021/cm0351893

    45. [45]

      (45) Sasabe, H.; Chiba, T.; Su, S. J.; Pu, Y. J.; Nakayama, K. I.; Kido, J. Chem. Commun. 2008, No. 44, 5821.

    46. [46]

      (46) Sasabe, H.; Tanaka, D.; Yokoyama, D.; Chiba, T.; Pu, Y. J.; Nakayama, K.; Yokoyama, M.; Kido, J. Adv. Funct. Mater. 2011, 21 (2), 336. doi: 10.1002/adfm.201001252

    47. [47]

      (47) Sasabe, H.; Minamoto, K.; Pu, Y. J.; Hirasawa, M.; Kido, J. Org. Electron. 2012, 13 (11), 2615. doi: 10.1016/j.orgel.2012.07.019

    48. [48]

      (48) Liu, M.; Su, S. J.; Jung, M. C.; Qi, Y. B.; Zhao,W. M.; Kido, J. Chem. Mater. 2012, 24 (20), 3817. doi: 10.1021/cm303075m

    49. [49]

      (49) Son, K. S.; Yahiro, M.; Imai, T.; Yoshizaki, H.; Adachi, C. J. Photopolym. Sci. Tec. 2007, 20 (1), 47. doi: 10.2494/photopolymer.20.47

    50. [50]

      (50) Hudson, Z. M.;Wang, Z. B.; Helander, M. G.; Lu, Z. H.; Wang, S. N. Adv. Mater. 2012, 24 (21), 2922. doi: 10.1002/adma.v24.21

    51. [51]

      (51) Cai, C.; Su, S. J.; Chiba, T.; Sasabe, H.; Pu, Y. J.; Nakayama, K.; Kido, J. Org. Electron. 2011, 12 (5), 843. doi: 10.1016/j.orgel.2011.01.021

    52. [52]

      (52) Su, S. J.; Cai, C.; Kido, J. J. Mater. Chem. 2012, 22 (8), 3447. doi: 10.1039/c2jm14151e

    53. [53]

      (53) Ge, G. P.; Yu, X. H.; Guo, H. Q.;Wang, F. Z.; Zou, D. C. Synth. Met. 2009, 159 (12), 1178. doi: 10.1016/j.synthmet.2009.02.007

    54. [54]

      (54) Lin, C. F.; Huang,W. S.; Chou, H. H.; Lin, J. T. J. Organomet. Chem. 2009, 694 (17), 2757. doi: 10.1016/j.jorganchem.2009.04.011

    55. [55]

      (55) Mondal, E.; Hung,W. Y.; Dai, H. C.;Wong, K. T. Adv. Funct. Mater. 2013, 23 (24), 3096. doi: 10.1002/adfm.v23.24

    56. [56]

      (56) Song, Y. H. First, Design and Synthesis of New Ruthenium Complexes and Fabrication of Films and Nano-Materials of Metal & Oxide by Chemical Vapor Deposition; Second,S ynthesis and Photophysical Properties Study of Red Phosphorescent Iridium Complexes. Ph. D. Dissertation, National Tsing Hua University, Taiwan, 2005. [宋怡桦. 一,新 型钌金属前驱物之设计合成及利用化学气相沉积法制备金属及氧化物薄膜与纳米材料; 二, 红色磷光铱金属错合物之合成及其光物理性质探讨[D]. 台湾: 国立清华大学,2005.]

    57. [57]

      (57) Kozhevnikov, V. N.; Durrant, M. C.;Williams, J. Inorg. Chem. 2011, 50 (13), 6304. doi: 10.1021/ic200706e

    58. [58]

      (58) Culham, S.; Lanoë, P.; Whittle, V. L.; Durrant, M. C.; Williams, J. A. G.; Kozhevnikov, V. N. Inorg. Chem. 2013, 52 (19), 10992. doi: 10.1021/ic401131x

    59. [59]

      (59) Chang, C.;Wu, Z.; Chiu, C.; Liang, Y.; Tsai, Y.; Liao, J.; Chi, Y.; Hsieh, H.; Kuo, T.; Lee, G.; Pan, H.; Chou, P.; Lin, J.; Tseng, M. ACS Appl. Mater. Interfaces 2013, 5 (15), 7341. doi: 10.1021/am401694s

    60. [60]

      (60) Lian, P.;Wei, H. B.; Zheng, C.; Nie, Y. F.; Bian, J.; Bian, Z. Q.; Huang, C. H. Dalton Trans. 2011, 40 (20), 5476. doi: 10.1039/c0dt01592j

    61. [61]

      (61) Chen, F. F.; Jiang,W. L.; Lou, B.; Bian, Z. Q.; Huang, C. H. Sci. China Ser. B 2009, 52 (11SI), 1808.

    62. [62]

      (62) Chen, Z.; Ding, F.; Bian, Z.; Huang, C. Org. Electron. 2010, 11 (3), 369.

    63. [63]

      (63) Kubota, Y.; Ozaki, Y.; Funabiki, K.; Matsui, M. J. Org. Chem. 2013, 78 (14), 7058. doi: 10.1021/jo400879g

    64. [64]

      (64) Maud, J. M.; Cooper, M. E.; Bolton, E. C.; Haynes, D. M. Synth. Met. 1995, 71 (1-3), 1935. doi: 10.1016/0379-6779(94)03114-L

    65. [65]

      (65) Petrov, V. F. Mol. Cryst. Liq. Cryst. 2006, 457 (1), 121. doi: 10.1080/15421400600598545

    66. [66]

      (66) Geelhaar, T. Ferroelectrics 1988, 85 (1), 329. doi: 10.1080/00150198808007667

    67. [67]

      (67) Kusumoto, T.; Ogino, K.; Sato, K.; Hiyama, T.; Takehara, S.; Nakamura, K. Chem. Lett. 1993, 22 (7), 1243.

    68. [68]

      (68) Schubert, H.; Zaschke, H. J. Prakt. Chem. 1970, 312 (3), 494.

    69. [69]

      (69) Shen, D.; Diele, S.; Pelzl, G.;Wirth, I.; Tschierske, C. J. Mater. Chem. 1999, 9 (3), 661. doi: 10.1039/a808275h

    70. [70]

      (70) Vlachos, P.; Kelly, S. M.; Mansoor, B.; O'Neill, M. Chem. Commun. 2002, No. 8, 874.

    71. [71]

      (71) Yoshizawa, A.; Yamaguchi, A. Chem. Commun. 2002, No.18, 2060.

    72. [72]

      (72) Rokunohe, J.; Yoshizawa, A. J. Mater. Chem. 2005, 15 (2), 275. doi: 10.1039/b410931g

    73. [73]

      (73) Roberts, J. C.; Kapernaum, N.; Giesselmann, F.; Lemieux, R. P. J. Am. Chem. Soc. 2008, 130 (42), 13842. doi: 10.1021/ja805672q

    74. [74]

      (74) Li, L.; Jones, C. D.; Ma lan, J.; Lemieux, R. P. J. Mater. Chem. 2007, 17 (22), 2313. doi: 10.1039/b700972k

    75. [75]

      (75) Roberts, J. C.; Kapernaum, N.; Song, Q. X.; Nonnenmacher, D.; Ayub, K.; Giesselmann, F.; Lemieux, R. P. J. Am. Chem. Soc. 2010, 132 (1), 364. doi: 10.1021/ja9087727

    76. [76]

      (76) Lin, Y. C.; Lai, C. K.; Chang, Y. C.; Liu, K. T. Liq. Cryst. 2002, 29 (2), 237. doi: 10.1080/02678290110097800

    77. [77]

      (77) He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108 (4), 1245. doi: 10.1021/cr050054x

    78. [78]

      (78) Liu, B.; Hu, X. L.; Liu, J.; Zhao, Y. D.; Huang, Z. L. Tetrahedron Lett. 2007, 48 (34), 5958. doi: 10.1016/j.tetlet.2007.06.122

    79. [79]

      (79) Liu, Z. J.; Chen, T.; Liu, B.; Huang, Z. L.; Huang, T.; Li, S. Y.; Xu, Y. X.; Qin, J. G. J. Mater. Chem. 2007, 17 (44), 4685. doi: 10.1039/b707909e

    80. [80]

      (80) Liu, Z. J.; Shao, P.; Huang, Z. L.; Liu, B.; Chen, T.; Qin, J. G. Chem. Commun. 2008, No. 19, 2260.

    81. [81]

      (81) Li, L.; Tian, Y. P.; Yang, J. X.; Sun, P. P.;Wu, J. Y.; Zhou, H. P.; Zhang, S. Y.; Jin, B. K.; Xing, X. J.;Wang, C. K.; Li, M.; Cheng, G. H.; Tang, H. H.; Huang,W. H.; Tao, X. T.; Jiang, M. H. Chem. -Asian J. 2009, 4 (5), 668. doi: 10.1002/asia.v4: 5

    82. [82]

      (82) Chen, D. G.; Zhong, C.; Dong, X. H.; Liu, Z. H.; Qin, J. G. J. Mater. Chem. 2012, 22 (10), 4343. doi: 10.1039/c2jm14766a

    83. [83]

      (83) Tang, C.; Zhang, Q.; Li, D.; Zhang, J.; Shi, P.; Li, S.;Wu, J.; Tian, Y. Dyes Pigments 2013, 99 (1), 20. doi: 10.1016/j.dyepig.2013.04.016

    84. [84]

      (84) Achelle, S.; Nouira, I.; Pfaffinger, B.; Ramondenc, Y.; Ple, N.; Rodriguez-Lopez, J. J. Org. Chem. 2009, 74 (10), 3711. doi: 10.1021/jo900107u

    85. [85]

      (85) Hadad, C.; Achelle, S.; Garcia-Martinez, J. C.; Rodriguez-Lopez, J. J. Org. Chem. 2011, 76 (10), 3837. doi: 10.1021/jo200204u

    86. [86]

      (86) Zhang, Q.; Li, L.; Zhang, M.; Liu, Z. D.;Wu, J. Y.; Zhou, H. P.; Yang, J. X.; Zhang, S. Y.; Tian, Y. P. Dalton Trans. 2013, 42 (24), 8848. doi: 10.1039/c3dt50582k

    87. [87]

      (87) Grimsdale, A. C.; Cervini, R.; Friend, R. H.; Holmes, A. B.; Kim, S. T.; Moratti, S. C. Synth. Met. 1997, 85 (1-3), 1257. doi: 10.1016/S0379-6779(97)80229-9

    88. [88]

      (88) Liu, M.W.; Zhang, X. H.; Lai,W. Y.; Lin, X. Q.;Wong, F. L.; Gao, Z. Q.; Lee, C. S.; Hung, L. S.; Lee, S. T.; Kwong, H. L. Phys. Status Solidi A 2001, 185 (2), 203.

    89. [89]

      (89) Turksoy, F.; Hughes, G.; Batsanov, A. S.; Bryce, M. R. J. Mater. Chem. 2003, 13 (7), 1554. doi: 10.1039/b303472k

    90. [90]

      (90) Zhao, L.; Perepichka, I. F.; Turksoy, F.; Batsanov, A. S.; Beeby, A.; Findlay, K. S.; Bryce, M. R. New J. Chem. 2004, 28 (8), 912. doi: 10.1039/b401867m

    91. [91]

      (91) Wu, A. P.; Akagi, T.; Jikei, M.; Kakimoto, M.; Imai, Y.; Ukishima, S.; Takahashi, Y. Thin Solid Films 1996, 273 (1-2), 214. doi: 10.1016/0040-6090(95)06780-9

    92. [92]

      (92) Peng, Z. H.; Galvin, M. E. Chem. Mater. 1998, 10 (7), 1785. doi: 10.1021/cm970697w

    93. [93]

      (93) Wu, S.; Burkhardt, S. E.; Yao, J.; Zhong, Y.; Abrûna, H. D. Inorg. Chem. 2011, 50 (9), 3959. doi: 10.1021/ic1023696

    94. [94]

      (94) Zhong, Y.;Wu, S. I.; Burkhardt, S. N. E.; Yao, C.; Abruña, H. D. Inorg. Chem. 2011, 50 (2), 517. doi: 10.1021/ic101629w

    95. [95]

      (95) Wu, S. H.; Abruna, H. D.; Zhong, Y.W. Organometallics 2012, 31 (3), 1161. doi: 10.1021/om201240c

    96. [96]

      (96) Wu, S. H.; Burkhardt, S. E.; Zhong, Y.W.; Abruña, H. D. Inorg. Chem. 2012, 51 (24), 13312. doi: 10.1021/ic3019666

    97. [97]

      (97) Zhang, G. L.; Liu, Z. H., Guo, H. Q. Acta Phys. -Chim. Sin. 2003, 19 (10), 889. [张国林, 刘泽华, 郭海清. 物理化学学报, 2003, 19 (10), 889.] doi: 10.3866/PKU.WHXB20031001

    98. [98]

      (98) Zhang, G. L., Liu, Z. H.; Guo, H. Q.; Chuai, Y. T.; Zhen, C. G.; Zou, D. C. Chem. J. Chin. Univ. 2004, 25 (3), 397. [张国林, 刘泽华, 郭海清, 啜玉涛, 甄常刮, 邹德春. 高等学校化学学报, 2004, 25 (3), 397.]

    99. [99]

      (99) He, J.; Ge, G. P.; Xu, K.; Guo, H. Q.; Yin, N. Journal of Beijing Forestry University 2006, 28 (Supp. 2), 137. [何静, 葛国平, 徐凯, 郭海清, 殷宁. 北京林业大学学报, 2006, 28 (增刊2), 137.]

    100. [100]

      (100) Chandrasekhar, V.; Rahaman, S. M.W.; Hajra, T.; Das, D.; Ghatak, T.; Rafiq, S.; Sen, P.; Bera, J. K. Chem. Commun. 2011, 47 (38), 10836. doi: 10.1039/c1cc12830b


  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(929)
  • Abstract views(2323)
  • HTML views(322)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return