Citation: WANG Wen-Qing, ZHANG Yu-Feng, NG Yan. Crystal Fine Structure and Optical Rotatory Angle Study on Spin Superfluidity of Intermolecular N+H…O- Hydrogen Bond Electron Cooper Pairing onto D-, L-, and DL-Valine Optical Lattices[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 608-622. doi: 10.3866/PKU.WHXB201402181
-
With a view to understanding the argument of the phase transition mechanisms of D- and Lvaline around 270 K, the temperature dependences of the heat capacities of single crystals, ground powders, and polycrystalline products were investigated using differential scanning calorimetry. Endothermic transition peaks were observed at phase transition temperatures of 273.59 and 273.76 K for D- and L-valine single crystals, respectively with an energy difference of 0.18 J?mol-1. The X-ray crystal fine structure of chiral valine was determined using Mo-Kα radiation (λ=0.071073 nm) on Nonius Kappa CCD diffractometer. D- and L-valine crystals were monoclinic, with the P21 space group, Z=4, lattice constants a= 0.96706(5)/0.96737(5) nm, b=0.52680(3)/0.52664(3) nm, and c=1.20256(7)/1.20196 (6) nm, and β=90.724(2)°/90.722(3)° at ~270 K. Two crystallographically independent molecules A (trans form) and B (gauche I from) were observed in the unit cell, these were rotational isomers with two different conformations. X ray diffraction at 293, 270, 223, and 173 K showed that the N―H, H…O bond lengths and the N―H…O bond angle of D- valine fluctuated at 270 K,but the intramolecular N―H…O hydrogen bond was stable and measurable. No evidence was obtained for a configuration transformation from D-valine to L-valine. Based on the clockwise and counterclockwise rotations of NH3→CO2 in the chiral valine crystals and the optical rotatory angle measurements, the intermolecular N+H…O- hydrogen bond was electronic Cooper pairing and exhibited the spin superfluidity onto D-, L-, and DL- valine crystal lattices from 270 to 290 K upon the transition to the superconducting state.
-
-
[1]
(1) Salam, A. J. Mol. Evol. 1991, 33, 105. doi: 10.1007/BF02193624
-
[2]
(2) Salam, A. Phys. Lett. 1992, B288, 153.
-
[3]
(3) Salam, A. The Origin of Chirality, the Role of Phase Transitions and Their Induction in Amino Acids. In Chemical Evolution: Origin of Life; Ponnamperuma, C., Chela-Flores, J. Eds.; A. Deepak Publishing: Hampton, Virginia, U.S.A., 1993; pp 101-117.
-
[4]
(4) Salam, A. Biological Macromolecules and the Phase Transitions They Bring About. Proceeding of the Second International Symposium on Conceptual Tools for Understanding Nature; Costa, G., Claucci, G., Giorgi, M. Eds.;World Scientific: Singapore, Trieste, Sept 23-25, 1992; pp 209-220.
-
[5]
(5) Figureau, A.; Duval, E.; Boukenter, A. Search for Phase Transitions Changing Molecular Chirality. Proceeding of the Trieste Conference on Chemical Evolution and the Origin ofL ife; Ponnamperuma, C., Chela-Flores, J. Eds.; A. Deepak Publishing: Hampton, Virginia, U.S.A., 1993; pp 157-164.
-
[6]
(6) Figureau, A.; Duval, E.; Boukenter, A. Origin of Life and Evolution of the Biosphere 1995, 25, 211. doi: 10.1007/BF01581584
-
[7]
(7) Bonner,W. A. Chirality 2000, 12, 114.
-
[8]
(8) Torri, K.; Iitaka, Y. Acta Cryst. B 1970, 26, 1317. doi: 10.1107/S0567740870004065
-
[9]
(9) Dalhus, B.; Görbitz, C. H. Acta Chem. Scand. 1996, 50, 544. doi: 10.3891/acta.chem.scand.50-0544
-
[10]
(10) Mallikarjunan, M.; Rao, S. T. Acta Cryst. B 1969, 25, 296.
-
[11]
(11) Pawlukoj?, A.; Bobrowicz, L.; Natkaniec, I.; Leciejewicz, J. Spectrochimica Acta A 1995, 51, 303.
-
[12]
(12) ng, Y.;Wang,W. Q.; Liu, H.W.; Du, S. X.; Guo, H. M.; Wang, Y. L.; Gao, H. J. Acta Phys. -Chim. Sin. 2005, 21, 867. [龚, 王文清, 刘虹雯, 杜世萱, 郭海明, 王业亮, 高鸿钧. 物理化学学报, 2005, 21, 867.] doi: 10.3866/PKU.WHXB20050809
-
[13]
(13) Guo, H. M.; Liu, H.W.;Wang, Y. L.; Gao, H. J.; ng, Y.; Jiang, H. Y.;Wang,W. Q. Surface Science 2004, 552, 70.
-
[14]
(14) Wang,W. Q.; ng, Y.; Liang, Z.; Sun, F. L.; Shi, D. X.; Gao, H. J. Surface Science 2002, 512, L379.
-
[15]
(15) Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, Heidelberg, 1986; p 309.
-
[16]
(16) Cronin, J. R.; Pizzarello, S. Science 1997, 275, 951. doi: 10.1126/science.275.5302.951
-
[17]
(17) Sullivan, R.; Pyda, M.; Pak, J.;Wunderlich, B.; Thompson, J. R.; Pagni, R.; Pan, H.; Barnes, C.; Schwerdtfeger, P.; Compton, R. J. Phys. Chem. A 2003, 107, 6674. doi: 10.1021/jp0225673
-
[18]
(18) Wang,W. Q.; Yi, F.; Ni, Y. M.; Zhao, Z. X.; Jin, X. L.; Tang, Y. Q. J. Biol. Phys. 2000, 26, 51. doi: 10.1023/A:1005187416704
-
[19]
(19) Wang,W. Q.; Shen, X. C.;Wu, J. L.; ng, Y.; Shen, G. H.; Zhao, H. K. Acta Phys. -Chim. Sin. 2012, 28, 773. [王文清, 沈新春, 吴季兰, 龚, 申国华, 赵洪凯. 物理化学学报, 2012,28, 773.] doi: 10.3866/PKU.WHXB201202132
-
[20]
(20) (a) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Am. Chem. Soc. 1960, 82, 4813. doi: 10.1021/ja01503a014
-
[21]
(b) Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data; CRC Press: Cleveland, 1976; Vol. 4.
-
[22]
(21) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Phys. Chem. 1963, 67 (5), 1128. doi: 10.1021/j100799a047
-
[23]
(22) Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V. J. Therm. Anal. Calorim. 2013, 111, 905.
-
[24]
(23) Wang,W. Q.; Min,W.; Zhu, C. F.; Yi, F. Phys. Chem. Chem. Phys. 2003, 5, 4000. doi: 10.1007/s10973-012-2286-6
-
[25]
(24) Chen, Y.;Wang,W. Q.; Du,W. M. Acta Phys. -Chim. Sin. 2004, 20, 540. [陈渝, 王文清, 杜为民. 物理化学学报, 2004, 20, 540.] doi: 10.3866/PKU.WHXB20040519
-
[26]
(25) Yates, J. R.; Pickard, C. J.; Payne, M. C.; Dupree, R.; Profeta, M.; Mauri, F. J. Phys. Chem. A 2004, 108, 6032. doi: 10.1021/jp049362+
-
[27]
(26) Yamada, K.; Nemoto, T.; Asanuma, M.; Honda, H.; Yamazaki, T.; Hirota, H. Solid State Nuclear Magnetic Resonance 2006, 30, 182. doi: 10.1016/j.ssnmr.2006.09.003
-
[28]
(27) Yang, S. J.; Feng, S. P. New Journal of Physics 2010, 12, 1.
-
[29]
(28) Eisberg, R.; Eesnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles; JohnWiley & Sons: New York, 1985; p 266.
-
[30]
(29) (a) Lee, T. D.; Low, F. E.; Pines, D. Phys. Rev. 1953, 90, 297. doi: 10.1103/PhysRev.90.297
-
[31]
(b) Lee, T. D. Lee, T. D. Scientific Papers Selected, Vol. 1; China Center of Advanced Science and Technology, Ed.; Shanghai Science and Technology Press: Shanghai, 2006; pp6 4-66. [李政道. 李政道科学论文选(上册). 中国高等科学技术中心编. 上海: 上海科学技术出版社, 2006: 64-66.]
-
[32]
(30) Hirsch, J. E. Physical Review B 2005, 71 (18), 4521.
-
[33]
(31) Wang,W. Q.; ng, Y.; Shen, X. C.; Zhang, Y. F. Acta Phys. -Chim. Sin. 2013, 29, 473. [王文清, 龚, 沈新春, 张玉凤. 物理化学学报, 2013, 29, 473.] doi: 10.3866/PKU.W HXB201212273
-
[34]
(32) Wang,W. Q.; Shen, X. C.; Zhang, Y. F., ng, Y. Acta Phys. -Chim. Sin. 2013, 29, 1396. [王文清, 沈新春, 张玉凤, 龚. 物理化学学报, 2013, 29, 1396.] doi: 10.3866/PKU.W HXB201304163
-
[1]
-
-
[1]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[2]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[3]
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
-
[4]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[5]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[6]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[7]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[8]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[9]
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[13]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[14]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[15]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[16]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[17]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[18]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[19]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(619)
- Abstract views(798)
- HTML views(15)