Citation: JIN Zhao, LIU Jian, WANG Li-Li, CAO Feng-Lei, SUN Huai. Development and Validation of an All-Atom Force Field for the Energetic Materials TATB, RDX and HMX[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 654-661. doi: 10.3866/PKU.WHXB201402113 shu

Development and Validation of an All-Atom Force Field for the Energetic Materials TATB, RDX and HMX

  • Received Date: 25 December 2013
    Available Online: 11 February 2014

    Fund Project:

  • An all-atom force field was developed and validated for three energetic materials 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX). The functional form of the force field is widely used. The valence parameters were derived by fitting the quantum mechanics data. The atomic charge and van der Waals (VDW) parameters were optimized by fitting experimental data such as densities and sublimation enthalpies of the molecular crystals. The force field was validated by calculating the molecular conformers in the gas phase and the physical properties of the molecular crystals. It is demonstrated that the force field performs well in predicting molecular structures, vibrational frequencies, lattice parameters, crystalline densities, and sublimation enthalpies. Further validation showed that the force field predicts the equation of states and the bulk modulus well.

    1. [1]

      (1) Gee, R. H.; Maiti, A.; Bastea, S.; Fried, L. E. Macromolecules 2007, 40, 3422. doi: 10.1021/ma0702501

    2. [2]

      (2) Maiti, A.; Gee, R. H.; Hoffman, D. M.; Fried, L. E. J. Appl. Phys. 2008, 103, 053504. doi: 10.1063/1.2838319

    3. [3]

      (3) Xiao, J.; Huang, H.; Li, J.; Zhang, H.; Zhu, W.; Xiao, H. J. Mater. Sci. 2008, 43, 5685. doi: 10.1007/s10853-008-2704-0

    4. [4]

      (4) Xu, X.; Xiao, J.; Huang, H.; Li, J.; Xiao, H. J. Hazard. Mater. 2010, 175, 423. doi: 10.1016/j.jhazmat.2009.10.023

    5. [5]

      (5) Zhou, Y.; Long, X.; Wei, X. J. Mol. Model. 2011, 17, 3015. doi: 10.1007/s00894-011-0977-8

    6. [6]

      (6) Huang, Y. C.; Hu, Y. J.; Xiao, J. J.; Yin, K. L.; Xiao, H. M. Acta Phys. -Chim. Sin. 2005, 21, 425. [黄玉成, 胡应杰, 肖继军, 殷开梁, 肖鹤鸣. 物理化学学报, 2005, 21, 425.] doi: 10.3866/PKU.WHXB20050416

    7. [7]

      (7) Xiao, J. J.; Gu, C. G.; Fang, G. Y.; Zhu, W.; Xiao, H. M. Acta Chim. Sin. 2005, 63, 439. [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣. 化学学报, 2005, 63, 439.]

    8. [8]

      (8) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1997, 101, 798. doi: 10.1021/jp9624865

    9. [9]

      (9) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1998, 102, 6692. doi: 10.1021/jp981661+

    10. [10]

      (10) Smith, G. D.; Bharadwaj, R. K. J. Phys. Chem. B 1999, 103, 3570. doi: 10.1021/jp984599p

    11. [11]

      (11) Boyd, S.; Gravelle, M.; Politzer, P. J. Chem. Phys. 2006, 124, 104508. doi: 10.1063/1.2176621

    12. [12]

      (12) Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. J. Chem. Phys. 2004, 120, 7059. doi: 10.1063/1.1676120

    13. [13]

      (13) Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039

    14. [14]

      (14) Plimpton, S. LAMMPS:Large-Scale Atomic/Molecular Massively Parallel Simulator. http://lammps.sandia. v.

    15. [15]

      (15) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. 10.1002/(ISSN)1096-987X

    16. [16]

      (16) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/(ISSN)1096-987X

    17. [17]

      (17) Cady, H. H.; Larson, A. C. Acta Crystallogr. 1965, 18, 485. doi: 10.1107/S0365110X6500107X

    18. [18]

      (18) Choi, C.; Prince, E. Acta Crystallogr. Sect. B 1972, 28, 2857. doi: 10.1107/S0567740872007046

    19. [19]

      (19) Cady, H. H.; Smith, L. C. Los Alamos Scientific Laboratory Report LAMS-2652 TID-4500; Los Alamos National Laboratory: Los Alamos, NM, 1961.

    20. [20]

      (20) Choi, C. S.; Boutin, H. P. Acta Crystallogr. Sect. B 1970, 26, 1235. doi: 10.1107/S0567740870003941

    21. [21]

      (21) Cady, H. H.; Larson, A. C.; Cromer, D. T. Acta Crystallogr. 1963, 16, 617. doi: 10.1107/S0365110X63001651

    22. [22]

      (22) Cobbledick, R.; Small, R. Acta Crystallogr. Sect. B 1974, 30, 1918. doi: 10.1107/S056774087400611X

    23. [23]

      (23) Direct Force Field, 7.1; Aeon Technology Inc.: San Die , CA, USA, 2012.

    24. [24]

      (24) Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720. doi: 10.1021/jp972062q

    25. [25]

      (25) Riley, K. E.; Op't Holt, B. T.; Merz, K. M. J. Chem. Theory Comput. 2007, 3, 407. doi: 10.1021/ct600185a

    26. [26]

      (26) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361. doi: 10.1002/(ISSN)1096-987X

    27. [27]

      (27) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    28. [28]

      (28) Frisch, M.; Trucks, G.; Schlegel, H.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, USA, 2004.

    29. [29]

      (29) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    30. [30]

      (30) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v

    31. [31]

      (31) Rosen, J. M.; Dickinson, C. J. Chem. Eng. Data 1969, 14, 120. doi: 10.1021/je60040a044

    32. [32]

      (32) Taylor, J. W.; Crookes, R. J. J. Chem. Soc., Faraday Trans. 1976, 72, 723. doi: 10.1039/f19767200723

    33. [33]

      (33) Bedrov, D.; Ayyagari, C.; Smith, G. D.; Sewell, T. D.; Menikoff, R.; Zaug, J. M. J. Comput. Aided Mater. Des. 2001, 8, 77. doi: 10.1023/A:1020046817543

    34. [34]

      (34) Rai, N.; Bhatt, D.; Siepmann, J. I.; Fried, L. E. J. Chem. Phys. 2008, 129, 194510. doi: 10.1063/1.3006054

    35. [35]

      (35) Stevens, L. L.; Velisavljevic, N.; Hooks, D. E.; Dattelbaum, D. M. Propellants, Explos., Pyrotech. 2008, 33, 286. doi: 10.1002/prep.v33:4

    36. [36]

      (36) Bedrov, D.; Borodin, O.; Smith, G. D.; Sewell, T. D.; Dattelbaum, D. M.; Stevens, L. L. J. Chem. Phys. 2009, 131, 224703. doi: 10.1063/1.3264972

    37. [37]

      (37) Olinger, B.; Roof, B.; Cady, H. In Proceedings of International Symposium on High Dynamic Pressures Commissariat al Energie Atomique:Paris, France, 1978; p 3.

    38. [38]

      (38) Zheng, L.; Thompson, D. L. J. Chem. Phys. 2006, 125, 084505. 10.1063/1.2238860

    39. [39]

      (39) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1999, 103, 6783. doi: 10.1021/jp991202o


    1. [1]

      (1) Gee, R. H.; Maiti, A.; Bastea, S.; Fried, L. E. Macromolecules 2007, 40, 3422. doi: 10.1021/ma0702501

    2. [2]

      (2) Maiti, A.; Gee, R. H.; Hoffman, D. M.; Fried, L. E. J. Appl. Phys. 2008, 103, 053504. doi: 10.1063/1.2838319

    3. [3]

      (3) Xiao, J.; Huang, H.; Li, J.; Zhang, H.; Zhu, W.; Xiao, H. J. Mater. Sci. 2008, 43, 5685. doi: 10.1007/s10853-008-2704-0

    4. [4]

      (4) Xu, X.; Xiao, J.; Huang, H.; Li, J.; Xiao, H. J. Hazard. Mater. 2010, 175, 423. doi: 10.1016/j.jhazmat.2009.10.023

    5. [5]

      (5) Zhou, Y.; Long, X.; Wei, X. J. Mol. Model. 2011, 17, 3015. doi: 10.1007/s00894-011-0977-8

    6. [6]

      (6) Huang, Y. C.; Hu, Y. J.; Xiao, J. J.; Yin, K. L.; Xiao, H. M. Acta Phys. -Chim. Sin. 2005, 21, 425. [黄玉成, 胡应杰, 肖继军, 殷开梁, 肖鹤鸣. 物理化学学报, 2005, 21, 425.] doi: 10.3866/PKU.WHXB20050416

    7. [7]

      (7) Xiao, J. J.; Gu, C. G.; Fang, G. Y.; Zhu, W.; Xiao, H. M. Acta Chim. Sin. 2005, 63, 439. [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣. 化学学报, 2005, 63, 439.]

    8. [8]

      (8) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1997, 101, 798. doi: 10.1021/jp9624865

    9. [9]

      (9) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1998, 102, 6692. doi: 10.1021/jp981661+

    10. [10]

      (10) Smith, G. D.; Bharadwaj, R. K. J. Phys. Chem. B 1999, 103, 3570. doi: 10.1021/jp984599p

    11. [11]

      (11) Boyd, S.; Gravelle, M.; Politzer, P. J. Chem. Phys. 2006, 124, 104508. doi: 10.1063/1.2176621

    12. [12]

      (12) Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. J. Chem. Phys. 2004, 120, 7059. doi: 10.1063/1.1676120

    13. [13]

      (13) Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039

    14. [14]

      (14) Plimpton, S. LAMMPS:Large-Scale Atomic/Molecular Massively Parallel Simulator. http://lammps.sandia. v.

    15. [15]

      (15) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781. 10.1002/(ISSN)1096-987X

    16. [16]

      (16) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701. doi: 10.1002/(ISSN)1096-987X

    17. [17]

      (17) Cady, H. H.; Larson, A. C. Acta Crystallogr. 1965, 18, 485. doi: 10.1107/S0365110X6500107X

    18. [18]

      (18) Choi, C.; Prince, E. Acta Crystallogr. Sect. B 1972, 28, 2857. doi: 10.1107/S0567740872007046

    19. [19]

      (19) Cady, H. H.; Smith, L. C. Los Alamos Scientific Laboratory Report LAMS-2652 TID-4500; Los Alamos National Laboratory: Los Alamos, NM, 1961.

    20. [20]

      (20) Choi, C. S.; Boutin, H. P. Acta Crystallogr. Sect. B 1970, 26, 1235. doi: 10.1107/S0567740870003941

    21. [21]

      (21) Cady, H. H.; Larson, A. C.; Cromer, D. T. Acta Crystallogr. 1963, 16, 617. doi: 10.1107/S0365110X63001651

    22. [22]

      (22) Cobbledick, R.; Small, R. Acta Crystallogr. Sect. B 1974, 30, 1918. doi: 10.1107/S056774087400611X

    23. [23]

      (23) Direct Force Field, 7.1; Aeon Technology Inc.: San Die , CA, USA, 2012.

    24. [24]

      (24) Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720. doi: 10.1021/jp972062q

    25. [25]

      (25) Riley, K. E.; Op't Holt, B. T.; Merz, K. M. J. Chem. Theory Comput. 2007, 3, 407. doi: 10.1021/ct600185a

    26. [26]

      (26) Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361. doi: 10.1002/(ISSN)1096-987X

    27. [27]

      (27) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    28. [28]

      (28) Frisch, M.; Trucks, G.; Schlegel, H.; et al. Gaussian 03, Revision C.02; Gaussian Inc.: Wallingford, CT, USA, 2004.

    29. [29]

      (29) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    30. [30]

      (30) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v

    31. [31]

      (31) Rosen, J. M.; Dickinson, C. J. Chem. Eng. Data 1969, 14, 120. doi: 10.1021/je60040a044

    32. [32]

      (32) Taylor, J. W.; Crookes, R. J. J. Chem. Soc., Faraday Trans. 1976, 72, 723. doi: 10.1039/f19767200723

    33. [33]

      (33) Bedrov, D.; Ayyagari, C.; Smith, G. D.; Sewell, T. D.; Menikoff, R.; Zaug, J. M. J. Comput. Aided Mater. Des. 2001, 8, 77. doi: 10.1023/A:1020046817543

    34. [34]

      (34) Rai, N.; Bhatt, D.; Siepmann, J. I.; Fried, L. E. J. Chem. Phys. 2008, 129, 194510. doi: 10.1063/1.3006054

    35. [35]

      (35) Stevens, L. L.; Velisavljevic, N.; Hooks, D. E.; Dattelbaum, D. M. Propellants, Explos., Pyrotech. 2008, 33, 286. doi: 10.1002/prep.v33:4

    36. [36]

      (36) Bedrov, D.; Borodin, O.; Smith, G. D.; Sewell, T. D.; Dattelbaum, D. M.; Stevens, L. L. J. Chem. Phys. 2009, 131, 224703. doi: 10.1063/1.3264972

    37. [37]

      (37) Olinger, B.; Roof, B.; Cady, H. In Proceedings of International Symposium on High Dynamic Pressures Commissariat al Energie Atomique:Paris, France, 1978; p 3.

    38. [38]

      (38) Zheng, L.; Thompson, D. L. J. Chem. Phys. 2006, 125, 084505. 10.1063/1.2238860

    39. [39]

      (39) Sorescu, D. C.; Rice, B. M.; Thompson, D. L. J. Phys. Chem. B 1999, 103, 6783. doi: 10.1021/jp991202o


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(838)
  • Abstract views(828)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return