Citation: TAN Hai-Yan, WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2014, 30(4): 715-722. doi: 10.3866/PKU.WHXB201401221
-
Ametal-organic framework (MOF) material MIL-53(Al) (MIL: Materials of Institut Lavoisier) with high thermal stability was prepared by the solvothermal method, and it served as a support material for a cobalt catalyst in the CO oxidation reaction. A comparison between the catalytic performance of the MIL-53(Al) and the Al2O3 support material was carried out to understand the catalytic behavior of the catalysts. The catalysts were characterized by thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The TG and N2 adsorption-desorption analyses showed that MIL-53(Al) had od stability and high surface area. XRD and TEM results indicated that the size of the Co3O4 nanoparticles (5.03 nm) supported on MIL-53(Al) was smaller than that (7.83 nm) on the Al2O3 support. The highly dispersed Co3O4 nanoparticles from the three-dimensional porous structure of MIL-53(Al) led to superior catalytic activity during CO oxidation. The H2-TPR spectra showed that the reduction in temperature of the Co/MIL-53(Al) catalyst was significantly lower than that of the Co/Al2O3 catalyst, implying a higher catalytic activity for the Co/MIL-53(Al) catalyst. Indeed, the heterogeneous catalytic composite material Co/MIL-53(Al) catalyst exhibited much higher activity than the Co/Al2O3 catalyst in the CO oxidation test with 98% conversion at 160 ℃ and 100% conversion at 180 ℃. The catalytic activity and structure of the Co/MIL-53(Al) catalyst were stable during the reaction.
-
-
[1]
(1) ng, Y.; Cheng, H. Y.; Cui, X. Z.; Jiang, W.; Shi, J. L. J. Inorg. Mater. 2013, 28, 992. [龚云, 陈航榕, 崔香枝, 江莞, 施剑林. 无机材料学报, 2013, 28, 992.] doi: 10.3724/SP.J.1077.2013.12711
-
[2]
(2) Prasad, R.; Singh, P. Catal. Rev. 2012, 54, 224. doi: 10.1080/01614940.2012.648494
-
[3]
(3) Zhang, J.; Cheng, J.; Huang, X. S.; Li, G. S. Prog. Chem. 2012, 24, 1245. [张俊, 陈娟, 黄新松, 李广社. 化学进展, 2012, 24, 1245.]
-
[4]
(4) Liu, Y. L.; You, C. R.; Li, Y.; He, T.; Zhang, X. Q.; Suo, Z. H. Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠英, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.] doi: 10.3866/PKU.WHXB20100909
-
[5]
(5) Wen, L.; Lin, Z. Y.; Zhou, J. Z.; Gu, P. Y.; Fu, J. K.; Lin, Z. H. Acta Phys. -Chim. Sin. 2008, 24, 581. [文莉, 林种玉, 周剑章, 古萍英, 傅锦坤, 林仲华. 物理化学学报, 2008, 24, 581.] doi: 10.3866/PKU.WHXB20080407
-
[6]
(6) Sun, J. F.; Ge, C. Y.; Yao, X. J.; Cao, Y.; Zhang, L.; Tang, C. J.; Dong, L. Acta Phys. -Chim. Sin. 2013, 29, 2451. [孙敬方, 葛成艳, 姚小江, 曹原, 张雷, 汤常金, 董林. 物理化学学报, 2013, 29, 2451.] doi: 10.3866/PKU.WHXB201309041
-
[7]
(7) Gulari, E.; Guldur, C.; Srivannavit, S.; Osuwan, S. Appl. Catal. A: Gen. 1999, 182, 147. doi: 10.1016/S0926-860X(99)00002-2
-
[8]
(8) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki. Science 2005, 309, 2040. doi: 10.1126/science.1116275
-
[9]
(9) Li, H.; Eddaoudl, M.; O’keeffe, M.; Yaghl, O. M. Nature 1999, 402, 276. doi: 10.1038/46248
-
[10]
(10) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; , Y. B.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 6974, 523.
-
[11]
(11) Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. Angew. Chem. Int. Edit. 2005, 44, 4745.
-
[12]
(12) Corma, A.; Garcia, H.; Llabresi, Xamena, F. X. Chem. Rev. 2010, 110, 4606. doi: 10.1021/cr9003924
-
[13]
(13) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. doi: 10.1038/35010088
-
[14]
(14) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524. doi: 10.1021/ja901440g
-
[15]
(15) Combelles, C.; Yahia, M. B.; Pedesseau, L. Phys. Chem. 2010, 114, 9518.
-
[16]
(16) Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; nbeau, D.; Dominko, R.; Serre, C.; Ferey, G.; Tarascon, J. M. J. Am. Chem. Soc. 2011, 133, 16154. doi: 10.1021/ja2062659
-
[17]
(17) Li, Y. F.; Wei, M. D. Mater. Chem. 2011, 21, 17259. doi: 10.1039/c1jm12754c
-
[18]
(18) Zou, R. Q.; Sakurai, H.; Xu, Q. Angew. Chem. Int. Edit. 2006, 45, 2542.
-
[19]
(19) Zou, R. Q.; Sakurai, H.; Han, S.; Zhong, R. Q.; Xu, Q. J. Am. Chem. Soc. 2007, 129, 8402. doi: 10.1021/ja071662s
-
[20]
(20) Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302. doi: 10.1021/ja9047653
-
[21]
(21) Zhang, F.; Chen, C.; Xiao, W. M.; Xu, L.; Zhang, N. Catal. Commun. 2012, 26, 25. doi: 10.1016/j.catcom.2012.04.028
-
[22]
(22) Zamaro, J. M.; Perez, N. C.; Miro, E. E.; Casado, C.; Seoane, B.; Tellez, C.; Coronas, J. Chem. Eng. J. 2012, 180, 195.
-
[23]
(23) Ramos-Fernandez, E. V.; Pieters, C.; Linden, B. V.; Juan-Alcañiz, J.; Serra-Crespo, P.; Verhoeven, M. W. G. M.; Niemantsverdriet, H.; Gascon, J.; Kapteijn, F. J. Catal. 2012, 289, 42. doi: 10.1016/j.jcat.2012.01.013
-
[24]
(24) Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Nonnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. doi: 10.1021/ja3043905
-
[25]
(25) Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Ferey, G. Chem. Eur. J. 2004, 10, 1373.
-
[26]
(26) Zhang, J.; Liu, S. S.; Song, L. F.; Jiang, C. H.; Jiao, C. L.; Wang, S.; Zhang, Y.; Zhao, J. N.; Gao, X. Y.; Xu, F.; Sun, L. X. Materials China 2009, 28, 28. [张箭, 刘淑生, 宋莉芳, 姜春红, 焦成丽, 王爽, 张耀, 赵军宁, 高秀英, 徐芬, 孙立贤. 中国材料进展, 2009, 28, 28.]
-
[27]
(27) Li, B.; Shao, L. L. Inorg. Chem. Indus. 2008, 40, 54.[李波, 邵玲玲. 无机盐工业, 2008, 40, 54.]
-
[28]
(28) Zhu, B.; Luo, M. F.; Chen, P.; Zhou, L. H.; Yuan, X. X.; Wu, H. L. J. Fuel Chem. Technol. 1997, 25, 32. [朱波, 罗孟飞, 陈平, 周烈华, 袁贤鑫, 吴红丽. 燃料化学学报, 1997, 25, 32.]
-
[29]
(29) Zhou, R. X.; Jiang, X. Y.; Mao, J. X.; Zheng, X. M. Chin. J. Catal. 1997, 18, 53.[周仁贤, 蒋晓原, 毛建新, 郑小明. 催化学报. 1997, 18, 53.]
-
[30]
(30) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. doi: 10.1006/jcat.1993.1322
-
[31]
(31) Jia, M. J.; Zhang, W. X.; Tao, Y. G.; Wang, G. Y.; Cui, X. H.; Zhang, C. L.; Wu, T. H.; Dong, G. Q.; Li, X. M. Chem. J. Chin. Univ. 1999, 20, 637. [贾明君, 张文祥, 陶玉国, 王桂英, 崔湘浩, 张春雷, 吴通好, 董国强, 李雪梅. 高等学校化学学报, 1999, 20, 637.]
-
[1]
-
-
[1]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[2]
Junmei FAN , Wei LIU , Ruitao ZHU , Chenxi QIN , Xiaoling LEI , Haotian WANG , Jiao WANG , Hongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120
-
[3]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[6]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[7]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[13]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[14]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[15]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[17]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[20]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[1]
Metrics
- PDF Downloads(995)
- Abstract views(831)
- HTML views(10)