Citation: PEI Juan, HAO Yan-Zhong, SUN Bao, LI Ying-Pin, FAN Long-Xue, SUN Shuo, WANG Shang-Xin. Heterojunction Interface Modification and Its Effect on the Photovoltaic Performance of Hybrid Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 397-407. doi: 10.3866/PKU.WHXB201401202
-
Much attention has been focused on hybrid solar cells because of their low cost and high theoretical efficiencies. The photoactive layer of hybrid solar cells is composed of inorganic semiconductor and organic conjugated polymer. Excitons (electron-hole pairs) are formed upon the absorption of photons by the polymer. The excitons diffuse to the heterojunction interface between the organic donor and inorganic acceptor, and then dissociate to free electrons and holes. These electrons and holes then transfer to the inorganic and organic materials to realize charge separation and transportation. The exciton dissociation efficiency at the organic-inorganic heterojunction interface influences the photovoltaic performance of the cell. A small contact area and poor chemical compatibility between the organic and inorganic materials decrease the exciton dissociation efficiency, and thus the overall cell efficiency. This can be overcome by modifying the heterojunction interface. This paper reviews available interfacial modification methods, their function and significance, and explores prospects for the future development and application of hybrid solar cells.
-
-
[1]
(1) Green, M. A. Physlca E 2002, 14, 11. doi: 10.1016/S1386-9477(02)00354-5
-
[2]
(2) Cohen, M. J.; Harris, J. S. Appl. Phys. Lett. 1978, 33 (9), 812. doi: 10.1063/1.90537
-
[3]
(3) Weinberger, B. R.; Gau, S. C.; Kiss, Z. Appl. Phys. Lett. 1981, 38 (7), 555. doi: 10.1063/1.92410
-
[4]
(4) Tang, C.W. Appl. Phys. Lett. 1986, 48 (2), 183. doi: 10.1063/1.96937
-
[5]
(5) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.;Wudl, F. Science 1992, 258, 1474. doi: 10.1126/science.258.5087.1474
-
[6]
(6) Li, G.; Zhu, R.; Yang, Y. Nature Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11
-
[7]
(7) Brabec, C. J.; wrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22 (34), 3839. doi: 10.1002/adma.200903697
-
[8]
(8) Chen, J.; Song, J. L.; Sun, X.W.; Deng,W. Q.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S. Appl. Phys. Lett. 2009, 94 (15), 153115. doi: 10.1063/1.3117221
-
[9]
(9) Sun, B. Q.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3 (7), 961. doi: 10.1021/nl0342895
-
[10]
(10) Sun, B. Q.; Greenham, N. C. Phys. Chem. Chem. Phys. 2006, 8 (30), 3557. doi: 10.1039/b604734n
-
[11]
(11) Hao, Y. Z.; Ma, J. X.; Sun, B.; Li, Y. P.; Ren, J. J. Acta Chimica Sinica 2010, 68 (1), 33. [郝彦忠, 马洁霞, 孙宝, 李英品, 任聚杰. 化学学报, 2010, 68 (1), 33.]
-
[12]
(12) Jiang, X. X.; Chen, F.; Qiu,W. M.; Yan, Q. X.; Nan, Y. X.; Xu, H.; Yang, L. G.; Chen, H. Z. Sol. Energy Mater. Sol. Cells 2010, 94 (12), 2223. doi: 10.1016/j.solmat.2010.07.016
-
[13]
(13) Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y. J. Phys. Chem. C 2007, 111 (26), 9538. doi: 10.1021/jp0715777
-
[14]
(14) Guo, Y. B.; Li, Y. L.; Xu, J. J.; Liu, X. F.; Xu, J. L.; Lv, J.; Huang, C. S.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H. B.;Wang, S. J. Phys. Chem. C 2008, 112 (22), 8223. doi: 10.1021/jp800456c
-
[15]
(15) Bouclé, J.; Chyla, S.; Shaffer, M. S. P.; Durrant, J. R.; Bradley, D. D. C.; Nelson, J. Adv. Funct. Mater. 2008, 18 (4), 622.
-
[16]
(16) Xu, T. T.; Qiao, Q. Q. Energy Environ. Sci. 2011, 4 (8), 2700. doi: 10.1039/c0ee00632g
-
[17]
(17) Lira-Cantu, M.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2006, 90 (14), 2076. doi: 10.1016/j.solmat.2006.02.007
-
[18]
(18) Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 715. doi: 10.1016/j.solmat.2008.01.013
-
[19]
(19) Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J.W. P. Adv. Mater. 2008, 20 (24), 4755. doi: 10.1002/adma.v20:24
-
[20]
(20) Oosterhout, S. D.;Wienk, M. M.; Bavel, S. S.; Thiedmann, R.; Koster, L. J. A.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R. A. J. Nat. Mater. 2009, 8, 818. doi: 10.1038/nmat2533
-
[21]
(21) Moet, D. J. D.; Koster, L. J. A.; Boer, B. D.; Blom, P.W. M. Chem. Mater. 2007, 19 (24), 5856. doi: 10.1021/cm070555u
-
[22]
(22) Yu, G.; Gao, J.; Hummelen, J. C.;Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789
-
[23]
(23) Zhou, Y. F.; Eck, M.; Krüger, M. Energy Environ. Sci. 2010, 3 (12), 1851. doi: 10.1039/c0ee00143k
-
[24]
(24) Skompska, M. Synthetic Metals 2010, 160 (1-2), 1. doi: 10.1016/j.synthmet.2009.10.031
-
[25]
(25) Yang, J. M.; Peng, Y. L.; Tian, Q.W.; Chen, Z. G. Modern Chemical Industry 2011, 31 (10), 24. [杨健茂, 彭彦玲, 田启威, 陈志钢. 现代化工, 2011, 31 (10), 24.]
-
[26]
(26) Peng, X. M. Preparation of Polythiophene/ZnO Nanocrystal Bulk Heterojunction Hybrids for Photo-Electricity Devices. Master Dissertation, Nanchang University, Nanchang, 2010. [彭小明. 基于光电器件活性层聚噻吩/ZnO 杂化体系异质结的制备与研究[M]. 南昌: 南昌大学, 2010.]
-
[27]
(27) Saunders, B. R. Journal of Colloid and Interface Science 2012, 369 (1), 1. doi: 10.1016/j.jcis.2011.12.016
-
[28]
(28) Wright, M.; Uddin, A. Sol. Energy Mater. Sol. Cells 2012, 107, 87. doi: 10.1016/j.solmat.2012.07.006
-
[29]
(29) Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su,W. F.; Chang, C. P.; Chu, M.W.; Chen, C.W. J. Am. Chem. Soc. 2009, 131 (10), 3644. doi: 10.1021/ja8079143
-
[30]
(30) Weickert, J.; Auras, F.; Bein, T.; Schmidt-Mende, L. J. Phys. Chem. C 2011, 115 (30), 15081. doi: 10.1021/jp203600z
-
[31]
(31) h, C.; Scully, S. R.; McGehee, M. D. J. Appl. Phys. 2007, 101 (11), 114503. doi: 10.1063/1.2737977
-
[32]
(32) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11 (5), 374
-
[33]
(33) Garza, L.; Saponjic, Z. V.; Dimitrijevic, N. M.; Thurnauer, M. C.; Rajh, T. J. Phys. Chem. B 2006, 110 (2), 680. doi: 10.1021/jp054128k
-
[34]
(34) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. doi: 10.1021/cr900137k
-
[35]
(35) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437, 644.
-
[36]
(36) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. B 1996, 54 (24), 17628. doi: 10.1103/PhysRevB.54.17628
-
[37]
(37) Seo, J.; Kim,W. J.; Kim, S. J.; Lee, K. S.; Cartwright, A. N.; Prasad, P. N. Appl. Phys. Lett. 2009, 94 (13), 133302. doi: 10.1063/1.3110969
-
[38]
(38) Liu, J. C.;Wang,W. L.; Yu, H. Z.;Wu, Z. L.; Peng, J. B.; Cao, Y. Sol. Energy Mater. Sol. Cells 2008, 92 (11), 1403. doi: 10.1016/j.solmat.2008.05.017
-
[39]
(39) Park, I.; Lim, Y.; Noh, S.; Lee, D.; Meister, M.; Amsden, J. J.; Laquai, F.; Lee, C.; Yoon, D. Y. Organic Electronics 2011, 12, 424. doi: 10.1016/j.orgel.2010.12.002
-
[40]
(40) Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H. F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Sol. Energy Mater. Sol. Cells 2012, 98, 433. doi: 10.1016/j.solmat.2011.11.049
-
[41]
(41) Freitas, F. S.; Clifford, J. N.; Palomares, E.; Noqueira, A. F. Phys. Chem. Chem. Phys. 2012, 14, 11990. doi: 10.1039/c2cp41706e
-
[42]
(42) Canesi, E. V.; Binda, M.; Abate, A.; Guarnera, S.; Moretti, L.; D'Innocenzo, V.; Kumar, R. S. S.; Bertarelli, C.; Abrusci, A.; Snaith, H.; Calloni, A.; Brambilla, A.; Ciccacci, F.; Aghion, S.; Moia, F.; Ferragut, R.; Melis, C.; Malloci, G.; Mattoni, A.; Lanzani, G.; Petrozza, A. Energy Environ. Sci. 2012, 5 (10), 9068. doi: 10.1039/c2ee22212d
-
[43]
(43) Huynh,W. U.; Dittmer, J. J.; Teclemariam, N.; Milliron, D. J.; Alivisatos, A. P.; Barnham,W. J. Phys. Rev. B 2003, 67 (11), 115326. doi: 10.1103/PhysRevB.67.115326
-
[44]
(44) Wang, Z. J.; Qu, S. C.; Zeng, X. B.; Liu, J. P.; Zhang, C. S.; Tan, F. R.; Jin, L.;Wang, Z. G. Applied Surface Science 2008, 255 (5), 1916. doi: 10.1016/j.apsusc.2008.06.138
-
[45]
(45) Huynh,W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. doi: 10.1126/science.1069156
-
[46]
(46) Cheng, C.W.; Fan, H. J. Nano Today 2012, 7 (4), 327. doi: 10.1016/j.nantod.2012.06.002
-
[47]
(47) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Nano Lett. 2010, 10 (1), 239. doi: 10.1021/nl903406s
-
[48]
(48) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett. 2007, 7 (2), 409. doi: 10.1021/nl062660t
-
[49]
(49) Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. J. Phys. Chem. C 2007, 111 (50), 18451. doi: 10.1021/jp077593l
-
[50]
(50) Piris, J.; Kopidakis, N.; Olson, D. C.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G. Adv. Funct.Mater. 2007, 17 (18), 3849.
-
[51]
(51) Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; h, C.; Liu, Y.; McGehee, D. Adv. Funct. Mater. 2005, 15 (12), 1927.
-
[52]
(52) Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Thin Solid Films 2006, 496 (1), 26. doi: 10.1016/j.tsf.2005.08.179
-
[53]
(53) Xi, D. J.; Zhang, H.; Furst, S.; Chen, B.; Pei, Q. B. J. Phys. Chem. C 2008, 112 (49), 19765. doi: 10.1021/jp807868j
-
[54]
(54) Takanezawa, K.; Hirota, K.;Wei, Q. S.; Tajima, K.; Hashimoto, K. J. Phys. Chem. C 2007, 111 (19), 7218. doi: 10.1021/jp071418n
-
[55]
(55) Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater. 2010, 22 (9), 2705. doi: 10.1021/cm901703d
-
[56]
(56) Janáky, C.; Bencsik, G.; Rácz, Á.; Visy, C.; Tacconi, N. R.; Chanmanee,W.; Rajeshwar, K. Langmuir 2010, 26 (16), 13697. doi: 10.1021/la101300n
-
[57]
(57) Yodyingyong, S.; Zhou, X. Y.; Zhang, Q. F.; Triampo, D.; Xi, J. T.; Park, K.; Limketkai, B.; Cao, G. Z. J. Phys. Chem. C 2010, 114 (49), 21851. doi: 10.1021/jp1077888
-
[58]
(58) Hao, Y. Z.; Pei, J.;Wei, Y.; Cao, Y. H.; Jiao, S. H.; Zhu, F.; Li, J. J.; Xu, D. S. J. Phys. Chem. C 2010, 114 (18), 8622. doi: 10.1021/jp911263d
-
[59]
(59) Sun, B.; Hao, Y. Z.; Guo, F.; Cao, Y. H.; Zhang, Y. H.; Li, Y. P.; Xu, D. S. J. Phys. Chem. C 2012, 116 (1), 1395. doi: 10.1021/jp206067m
-
[60]
(60) Hao, Y. Z.; Cao, Y. H.; Sun, B.; Li, Y. P.; Zhang, Y. H.; Xu, D. S. Sol. Energy Mater. Sol. Cells 2012, 101, 107. doi: 10.1016/j.solmat.2012.02.032
-
[61]
(61) Yang, X. F.; Zhuang, J. L.; Li, X. Y.; Chen, D. H.; Ouyang, G. F.; Mao, Z. Q.; Han, Y. X.; He, Z. H.; Liang, C. L.;Wu, M. M.; Yu, J. C. ACS Nano 2009, 3 (5), 1212. doi: 10.1021/nn900084e
-
[62]
(62) Ko, S. H.; Lee, D.; Kang, H.W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Gri ropoulos, C. P.; Sung, H. J. Nano Lett. 2011, 11 (2), 666. doi: 10.1021/nl1037962
-
[63]
(63) Pei, J.; Peng, S. J.; Shi, J. F.; Liang, Y. L.; Tao, Z. L.; Liang, J.; Chen, J. J. Power Sources 2009, 187 (2), 620. doi: 10.1016/j. jpowsour.2008.11.028
-
[64]
(64) Pei, J.; Liang, M.; Chen, J.; Tao, Z. L.; Xu,W. Acta Phys. -Chim. Sin. 2008, 24 (11), 1950. [裴娟, 梁茂, 陈军, 陶占良, 许炜. 物理化学学报, 2008, 24 (11), 1950.] doi: 10.1016/S1872-1508(08)60077-7
-
[65]
(65) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036.
-
[66]
(66) Zhang,W.; Zhu, R.; Liu, B.; Ramakrishna, S. Appl. Energy 2012, 90 (1), 305. doi: 10.1016/j.apenergy.2011.03.037
-
[67]
(67) Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Adv. Mater. 2009, 21 (9), 994. doi: 10.1002/adma.v21:9
-
[68]
(68) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18 (9), 1202.
-
[69]
(69) Liao,W. P.; Hsu, S. C.; Lin,W. H.;Wu, J. J. J. Phys. Chem. C 2012, 116 (30), 15938. doi: 10.1021/jp304915x
-
[70]
(70) Wang, M. Q.;Wang, X. G. Sol. Energy Mater. Sol. Cells 2008, 92 (7), 766. doi: 10.1016/j.solmat.2008.01.015
-
[71]
(71) AbdulAlmohsin, S.; Cui, J. B. J. Phys. Chem. C 2012, 116 (17), 9433. doi: 10.1021/jp301881s
-
[72]
(72) Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Fréchet, J. M. J. J. Am. Chem. Soc. 2004, 126 (21), 6550. doi: 10.1021/ja0489184
-
[73]
(73) Briseno, A. L.; Holcombe, T.W.; Boukai, A. I.; Garnett, E. C.; Shelton, S.W.; Fréchet, J. J. M.; Yang, P. D. Nano Lett. 2010, 10 (1), 334. doi: 10.1021/nl9036752
-
[74]
(74) Mawyin, J.; Shupyk, I.;Wang, M. Q.; Poize, G.; Atienzar, P.; Ishwara, T.; Durrant, J. R.; Nelson, J.; Kanehira, D.; Yoshimoto, N.; Martini, C.; Shilova, E.; Secondo, P.; Brisset, H.; Fages, F.; Ackermann, J. J. Phys. Chem. C 2011, 115 (21), 10881. doi: 10.1021/jp112369t
-
[75]
(75) Querner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P. Chem. Mater. 2006, 18 (20), 4817. doi: 10.1021/cm061105p
-
[76]
(76) Bhongale, C. J.; Thelakkat, M. Sol. Energy Mater. Sol. Cells 2010, 94 (5), 817. doi: 10.1016/j.solmat.2009.12.030
-
[77]
(77) Zhang, Q. L.; Russell, T. P.; Emrick, T. Chem. Mater. 2007, 19 (15), 3712. doi: 10.1021/cm070603a
-
[1]
-
-
[1]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[2]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[3]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[4]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[5]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[6]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[7]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[8]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[9]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[10]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[11]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[12]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[13]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[14]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[15]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[16]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[17]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[18]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[19]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[20]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[1]
Metrics
- PDF Downloads(947)
- Abstract views(1343)
- HTML views(82)