Citation:
YU Qiu-Jie, ZHOU Bin, ZHANG Zhi-Hua, LIU Guang-Wu, DU Ai. Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method[J]. Acta Physico-Chimica Sinica,
;2014, 30(3): 500-507.
doi:
10.3866/PKU.WHXB201401201
-
Antimony-doped tin oxide (ATO) aerogels were prepared from inorganic salts via epoxide additional method, CO2 supercritical fluid drying and thermal treatment. ATO samples were dark blue monoliths with average density of about 600 mg·cm-3 and Sb concentrations of 5%-20%(x). Electron microscopy showed that the skeleton of the ATO aerogels consisted of particles of size of dozens of nanometers, which further consisted of primary particles of size about several nanometers. X-ray diffraction spectra showed that the main crystal structure within the ATO aerogels was tetra nal tin dioxide, while Sb doping only resulted in minor lattice distortion. X-ray photoelectron spectroscopy indicated that the valence state of tin was +4, while antimony was mixed with +3 and +5 valences. Four-point probe resistivity analysis exhibited that the electrical resistivity of theATO aerogels changed from 2.7 to 40 Ω·cm, among which the aerogel with 12%Sb had the lowest resistivity.
-
-
-
[1]
(1) Du, A.; Zhou, B.; Zhang, Z. H.; Shen, J. Materials 2013, 6, 941. doi: 10.3390/ma6030941
-
[2]
(2) Wang, J. Materials Review 1993, 2, 36. [王珏. 材料导报, 1993, 2, 36.]
-
[3]
(3) Du, A.; Zhou, B.; Xu,W.W.; Yu, Q. J.; Shen, Y.; Zhang, Z, H.; Shen, J.;Wu, G, M. Langmuir 2013, 29, 11208. doi: 10.1021/la401579z
-
[4]
(4) Zhou, B.; Shen, J.;Wu, G. M.; Sun, Q.; Ma, Y. D.;Wang, J. Energy Sci. Technol. 2004, 38, 125. [周斌, 沈军, 吴广明, 孙骐, 马耀东, 王珏. 原子能科学技术, 2004, 38, 125.]
-
[5]
(5) Gash, A. E.; Satcher. J. H.; Simpson, R. L. J. Non-Cryst. Solids 2004, 350, 145. doi: 10.1016/j.jnoncrysol.2004.06.030
-
[6]
(6) Gash, A. E.; Tillotson, T. M.; Satcher, J. H.; Poco, J. F., Jr.; Hrubesh, L.W.; Simpson, R. L. Chem. Mater. 2001, 13 (3), 999. doi: 10.1021/cm0007611
-
[7]
(7) Hao, Z. X.; Liu, H.; Guo, B.; Li, H.; Zhang, J.W.; Gan, L. H. Acta Phys. -Chim. Sin. 2007, 23, 289. [郝志显, 刘辉, 郭彬, 李红, 张家伟, 甘礼华. 物理化学学报, 2007, 23, 289.] doi: 10.1016/S1872-1508(07)60021-7
-
[8]
(8) Ren, H. B.; Zhang, L.;Wan, X. B. Energy Sci. Technol. 2007, 41, 288. [任洪波, 张林, 万小波. 原子能科学技术, 2007, 41, 288.]
-
[9]
(9) Du, A.; Zhou, B.; Shen, J. J. Non-Cryst. Solids 2009, 355, 175. doi: 10.1016/j.jnoncrysol.2008.11.015
-
[10]
(10) Du, A.; Zhou, B.; Shen, J.; Gui, J. Y.; Zhong, Y. H.; Liu, C. Z.; Zhang, Z. H.;Wu, G. M. New J. Chem. 2011, 35, 109.
-
[11]
(11) Chen, K.; Bao, Z. H.; Liu, D.; Zhu, X. R.; Zhang, Z. H.; Zhou, B. Acta Phys. -Chim. Sin. 2011, 27 (11), 2719. [陈珂, 包志豪, 刘东, 朱秀榕, 张志华, 周斌. 物理化学学报, 2011, 27 (11), 2719.] doi: 10.3866/PKU.WHXB20111110
-
[12]
(12) Chen, K.; Bao, Z. H.; Zhu, X. R.; Du, A.; Shen, J.;Wu, G. M.; Zhang, Z. H.; Zhou, B. Energy Sci. Technol. 2012, 46 (7), 855. [陈珂, 包志豪, 朱秀榕, 杜艾, 沈军, 吴广明, 张志华, 周斌. 原子能科学技术, 2012, 46 (7), 855.]
-
[13]
(13) Marauo, D.; Zhang, K.;Wang, S. R.; Louisa, J.; Hope,W. J. Mater. Chem 2012, 22, 20163. doi: 10.1039/c2jm34744j
-
[14]
(14) Hou, K.; Puzzo, D.; Helander, M. G.; Lo, S. S.; Bonifacio, L. D.;Wang,W. D.; Lu, Z. H.; Scholes, G. D.; Ozin, G. A. Adv. Mater. 2009, 21 (24), 2942.
-
[15]
(15) Muller, V.; Rasp, M.; Stefanic, G.; Ba, J. H.; Gunther, S.; Rathousky, J.; Niederberger, M. Chem, Mater. 2009, 21 (21), 5229. doi: 10.1021/cm902189r
-
[16]
(16) Simmons, C. R.; Schmitt, D.;Wei, X. X.; Han, D. R.; Volosin, A. M.; Ladd. D. M.; Seo, D. K.; Liu, Y.; Yan, H. ACS Nano 2011, 5 (7), 6060. doi: 10.1021/nn2019286
-
[17]
(17) Volosin, A. M.; Sharma, S.; Traverse, C.; Newman, N.; Seo, D. K. J. Mater. Chem. 2011, 21, 13232. doi: 10.1039/c1jm12362a
-
[18]
(18) Pan, Y.; Zheng, G. Q.; Zheng, L. S.;Wu, Z. A.; Zhi, B.; Luo, F.; Hu,W. Nonferrous Metals Engineering 2005, 57 (3), 49. [潘勇, 郑国渠, 郑林树, 吴周安, 支波, 骆芳, 胡伟. 有色金属工程, 2005, 57 (3), 49. ]
-
[19]
(19) ng, S.; Zhou, X. H.; Yin, G. Q.; Song, G. Q.; Li, C. J.; Yang, Z. R. CIESC Journal 2011, 62 (5), 1461. [龚圣, 周新华, 尹国强, 宋光泉, 李翠金, 杨卓如. 化工学报, 2011, 62 (5), 1461.]
-
[20]
(20) Wei, T. Y.; Lu, S. Y.; Chang, Y. C. J. Chin. Inst. Chem. Eng. 2007, 38 (5-6), 477. doi: 10.1016/j.jcice.2007.05.002
-
[21]
(21) Baumann, T. F.; Kucheyev, S. O.; Gash, A. E.; Stacher, J. H., Jr. Adv. Mater. 2005, 17, 1546.
-
[22]
(22) Li, X. P.;Wu, J. D.; Han, C. Y. Chemical World 2006, 4, 196. [李雄平, 吴介达, 韩传有. 化学世界, 2006, 4, 196.]
-
[23]
(23) Giraldi, T. R.; Escote, M. T.; Bernardi, M. I. B.; Bouquet, V.; Leite, E. R.; Lon , E.; Varela, J. A. J. Electroceram. 2004, 13, 159. doi: 10.1007/s10832-004-5093-z
-
[24]
(24) Kucheyev, S. O.; Baumann, T. F.; Sterne, P. A.;Wang, Y. M.; Buuren, T.; Hamza, A. V.; Terminello, J.;Willey, T. M. Phys. Rev. B 2005, 72 (3), 5404.
-
[25]
(25) Zeng, F. J.; Li, L.; Zhou, C. Electronic Compoents and Material 2008, 28 (12), 27. [曾凡菊, 李玲, 周超. 电子元件与材料, 2008, 28 (12), 27.]
-
[26]
(26) Lee, S. Y.; Park, B. O. Thin Solid Films 2006, 510, 154. doi: 10.1016/j.tsf.2006.01.001
-
[27]
(27) Guo, J. C.; She, C. H.; Lian, T. Q. J. Phys. Chem. C 2008, 112 (12), 4761. doi: 10.1021/jp077712x
-
[28]
(28) Tong, J. L.; Zheng, G. J.; Li, R. F.; Tao,W. Appl. Surf. Sci. 2008, 254 (20), 6547. doi: 10.1016/j.apsusc.2008.04.021
-
[29]
(29) Liu, S. M.; Ding,W. Y.; Chai,W. P. Physical B 2011, 406, 2303. doi: 10.1016/j.physb.2011.03.065
-
[30]
(30) Montilla, F.; Morallon, E.; De Battisti, A.; Barison, S.; Daolio, S.; Vazquez, J. L. J. Phys. Chem. B 2004, 108 (16), 15976.
-
[31]
(31) Sing, K. S.; Everett, D. H.; Haul, R. A. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603
-
[32]
(32) Norihiro, S.; Yuichiro, K.; Ya, D. C.; Kevin, C.W.; Shinsuke, T.; Keisuke, S.; Naoki, F.; Mikiya, M.; Kazuhiko, M.; Hirofumi, T.; Katsuhiko, A.; Yusuke, Y. CrystEngComm 2013, 15, 4404. doi: 10.1039/c3ce40189h
-
[1]
-
-
-
[1]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[2]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[3]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[4]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[5]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[6]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[7]
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
-
[8]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[9]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[10]
Xiaolong Li , Shiqi Zhong , Xiangfeng Wei , Zhiqiang Liu , Pan Zhan , Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013
-
[11]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[12]
Yucai Zhang , Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006
-
[13]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[14]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[16]
Hailian Cheng , Shuaiqiang Jia , Chunjun Chen , Haihong Wu , Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023
-
[17]
Jiayi Yang , Jianxiu Hao , Huacong Zhou , Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105
-
[18]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[19]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[20]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[1]
Metrics
- PDF Downloads(724)
- Abstract views(1123)
- HTML views(15)
Login In
DownLoad: