Citation: YU Qiu-Jie, ZHOU Bin, ZHANG Zhi-Hua, LIU Guang-Wu, DU Ai. Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 500-507. doi: 10.3866/PKU.WHXB201401201 shu

Antimony-Doped Tin Oxide Aerogel Based on Epoxide Additional Method

  • Received Date: 6 October 2013
    Available Online: 20 January 2014

    Fund Project: 国家自然科学基金(51102184,51172163),国家高技术研究发展计划(2013AA031801),国家科技支撑计划(2013BAJ01B01),上海市科委纳米技术专项项目(12nm0503001) (51102184,51172163),国家高技术研究发展计划(2013AA031801),国家科技支撑计划(2013BAJ01B01),上海市科委纳米技术专项项目(12nm0503001)上海航天科技创新基金项目(SAST201254,SAST201321)资助 (SAST201254,SAST201321)

  • Antimony-doped tin oxide (ATO) aerogels were prepared from inorganic salts via epoxide additional method, CO2 supercritical fluid drying and thermal treatment. ATO samples were dark blue monoliths with average density of about 600 mg·cm-3 and Sb concentrations of 5%-20%(x). Electron microscopy showed that the skeleton of the ATO aerogels consisted of particles of size of dozens of nanometers, which further consisted of primary particles of size about several nanometers. X-ray diffraction spectra showed that the main crystal structure within the ATO aerogels was tetra nal tin dioxide, while Sb doping only resulted in minor lattice distortion. X-ray photoelectron spectroscopy indicated that the valence state of tin was +4, while antimony was mixed with +3 and +5 valences. Four-point probe resistivity analysis exhibited that the electrical resistivity of theATO aerogels changed from 2.7 to 40 Ω·cm, among which the aerogel with 12%Sb had the lowest resistivity.

  • 加载中
    1. [1]

      (1) Du, A.; Zhou, B.; Zhang, Z. H.; Shen, J. Materials 2013, 6, 941. doi: 10.3390/ma6030941

    2. [2]

      (2) Wang, J. Materials Review 1993, 2, 36. [王珏. 材料导报, 1993, 2, 36.]

    3. [3]

      (3) Du, A.; Zhou, B.; Xu,W.W.; Yu, Q. J.; Shen, Y.; Zhang, Z, H.; Shen, J.;Wu, G, M. Langmuir 2013, 29, 11208. doi: 10.1021/la401579z

    4. [4]

      (4) Zhou, B.; Shen, J.;Wu, G. M.; Sun, Q.; Ma, Y. D.;Wang, J. Energy Sci. Technol. 2004, 38, 125. [周斌, 沈军, 吴广明, 孙骐, 马耀东, 王珏. 原子能科学技术, 2004, 38, 125.]

    5. [5]

      (5) Gash, A. E.; Satcher. J. H.; Simpson, R. L. J. Non-Cryst. Solids 2004, 350, 145. doi: 10.1016/j.jnoncrysol.2004.06.030

    6. [6]

      (6) Gash, A. E.; Tillotson, T. M.; Satcher, J. H.; Poco, J. F., Jr.; Hrubesh, L.W.; Simpson, R. L. Chem. Mater. 2001, 13 (3), 999. doi: 10.1021/cm0007611

    7. [7]

      (7) Hao, Z. X.; Liu, H.; Guo, B.; Li, H.; Zhang, J.W.; Gan, L. H. Acta Phys. -Chim. Sin. 2007, 23, 289. [郝志显, 刘辉, 郭彬, 李红, 张家伟, 甘礼华. 物理化学学报, 2007, 23, 289.] doi: 10.1016/S1872-1508(07)60021-7

    8. [8]

      (8) Ren, H. B.; Zhang, L.;Wan, X. B. Energy Sci. Technol. 2007, 41, 288. [任洪波, 张林, 万小波. 原子能科学技术, 2007, 41, 288.]

    9. [9]

      (9) Du, A.; Zhou, B.; Shen, J. J. Non-Cryst. Solids 2009, 355, 175. doi: 10.1016/j.jnoncrysol.2008.11.015

    10. [10]

      (10) Du, A.; Zhou, B.; Shen, J.; Gui, J. Y.; Zhong, Y. H.; Liu, C. Z.; Zhang, Z. H.;Wu, G. M. New J. Chem. 2011, 35, 109.

    11. [11]

      (11) Chen, K.; Bao, Z. H.; Liu, D.; Zhu, X. R.; Zhang, Z. H.; Zhou, B. Acta Phys. -Chim. Sin. 2011, 27 (11), 2719. [陈珂, 包志豪, 刘东, 朱秀榕, 张志华, 周斌. 物理化学学报, 2011, 27 (11), 2719.] doi: 10.3866/PKU.WHXB20111110

    12. [12]

      (12) Chen, K.; Bao, Z. H.; Zhu, X. R.; Du, A.; Shen, J.;Wu, G. M.; Zhang, Z. H.; Zhou, B. Energy Sci. Technol. 2012, 46 (7), 855. [陈珂, 包志豪, 朱秀榕, 杜艾, 沈军, 吴广明, 张志华, 周斌. 原子能科学技术, 2012, 46 (7), 855.]

    13. [13]

      (13) Marauo, D.; Zhang, K.;Wang, S. R.; Louisa, J.; Hope,W. J. Mater. Chem 2012, 22, 20163. doi: 10.1039/c2jm34744j

    14. [14]

      (14) Hou, K.; Puzzo, D.; Helander, M. G.; Lo, S. S.; Bonifacio, L. D.;Wang,W. D.; Lu, Z. H.; Scholes, G. D.; Ozin, G. A. Adv. Mater. 2009, 21 (24), 2942.

    15. [15]

      (15) Muller, V.; Rasp, M.; Stefanic, G.; Ba, J. H.; Gunther, S.; Rathousky, J.; Niederberger, M. Chem, Mater. 2009, 21 (21), 5229. doi: 10.1021/cm902189r

    16. [16]

      (16) Simmons, C. R.; Schmitt, D.;Wei, X. X.; Han, D. R.; Volosin, A. M.; Ladd. D. M.; Seo, D. K.; Liu, Y.; Yan, H. ACS Nano 2011, 5 (7), 6060. doi: 10.1021/nn2019286

    17. [17]

      (17) Volosin, A. M.; Sharma, S.; Traverse, C.; Newman, N.; Seo, D. K. J. Mater. Chem. 2011, 21, 13232. doi: 10.1039/c1jm12362a

    18. [18]

      (18) Pan, Y.; Zheng, G. Q.; Zheng, L. S.;Wu, Z. A.; Zhi, B.; Luo, F.; Hu,W. Nonferrous Metals Engineering 2005, 57 (3), 49. [潘勇, 郑国渠, 郑林树, 吴周安, 支波, 骆芳, 胡伟. 有色金属工程, 2005, 57 (3), 49. ]

    19. [19]

      (19) ng, S.; Zhou, X. H.; Yin, G. Q.; Song, G. Q.; Li, C. J.; Yang, Z. R. CIESC Journal 2011, 62 (5), 1461. [龚圣, 周新华, 尹国强, 宋光泉, 李翠金, 杨卓如. 化工学报, 2011, 62 (5), 1461.]

    20. [20]

      (20) Wei, T. Y.; Lu, S. Y.; Chang, Y. C. J. Chin. Inst. Chem. Eng. 2007, 38 (5-6), 477. doi: 10.1016/j.jcice.2007.05.002

    21. [21]

      (21) Baumann, T. F.; Kucheyev, S. O.; Gash, A. E.; Stacher, J. H., Jr. Adv. Mater. 2005, 17, 1546.

    22. [22]

      (22) Li, X. P.;Wu, J. D.; Han, C. Y. Chemical World 2006, 4, 196. [李雄平, 吴介达, 韩传有. 化学世界, 2006, 4, 196.]

    23. [23]

      (23) Giraldi, T. R.; Escote, M. T.; Bernardi, M. I. B.; Bouquet, V.; Leite, E. R.; Lon , E.; Varela, J. A. J. Electroceram. 2004, 13, 159. doi: 10.1007/s10832-004-5093-z

    24. [24]

      (24) Kucheyev, S. O.; Baumann, T. F.; Sterne, P. A.;Wang, Y. M.; Buuren, T.; Hamza, A. V.; Terminello, J.;Willey, T. M. Phys. Rev. B 2005, 72 (3), 5404.

    25. [25]

      (25) Zeng, F. J.; Li, L.; Zhou, C. Electronic Compoents and Material 2008, 28 (12), 27. [曾凡菊, 李玲, 周超. 电子元件与材料, 2008, 28 (12), 27.]

    26. [26]

      (26) Lee, S. Y.; Park, B. O. Thin Solid Films 2006, 510, 154. doi: 10.1016/j.tsf.2006.01.001

    27. [27]

      (27) Guo, J. C.; She, C. H.; Lian, T. Q. J. Phys. Chem. C 2008, 112 (12), 4761. doi: 10.1021/jp077712x

    28. [28]

      (28) Tong, J. L.; Zheng, G. J.; Li, R. F.; Tao,W. Appl. Surf. Sci. 2008, 254 (20), 6547. doi: 10.1016/j.apsusc.2008.04.021

    29. [29]

      (29) Liu, S. M.; Ding,W. Y.; Chai,W. P. Physical B 2011, 406, 2303. doi: 10.1016/j.physb.2011.03.065

    30. [30]

      (30) Montilla, F.; Morallon, E.; De Battisti, A.; Barison, S.; Daolio, S.; Vazquez, J. L. J. Phys. Chem. B 2004, 108 (16), 15976.

    31. [31]

      (31) Sing, K. S.; Everett, D. H.; Haul, R. A. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603

    32. [32]

      (32) Norihiro, S.; Yuichiro, K.; Ya, D. C.; Kevin, C.W.; Shinsuke, T.; Keisuke, S.; Naoki, F.; Mikiya, M.; Kazuhiko, M.; Hirofumi, T.; Katsuhiko, A.; Yusuke, Y. CrystEngComm 2013, 15, 4404. doi: 10.1039/c3ce40189h


  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    9. [9]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    20. [20]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

Metrics
  • PDF Downloads(724)
  • Abstract views(847)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return