Citation:
	            
		            YANG  Wen-Chao, BI  Yu-Jing, YANG  Bang-Cheng, WANG  De-Yu, SHI  Si-Qi. Preparation and Electrochemical Characterization of Nano-LiMnPO4[J]. Acta Physico-Chimica Sinica,
							;2014, 30(3): 460-466.
						
							doi:
								10.3866/PKU.WHXB201401074
						
					
				
					
				
	        
- 
	                	
Nano-LiMnPO4 samples were synthesized via a two-step heating polyol method. The role of the first thermal plateau temperature T1 (T1=100, 110, 120, 130, 140, 150 ℃) on the physical and electrochemical properties of the samples was investigated. Their structures and morphologies were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 sorption measurements. All samples at different plateau temperatures exhibited a sheet structure. At T1=100-120 ℃, samples contained some impurities, and their specific surface areas were <15 m2·g-1. Pure nano-LiMnPO4 was obtained at T1=130 ℃, and exhibited the largest specific surface area (46.3 m2·g-1). The specific surface areas of samples remained at 35-37 m2·g-1 with further increase in T1. The electrochemical performance of the nano-LiMnPO4 samples followed the same trend as their specific surface areas. Nano-LiMnPO4 at T1=130 ℃ exhibited the best electrochemical performance, with a discharge capacity of 129 mAh·g-1 at 0.1C rate and 81 mAh·g-1 at 5C rate. This indicated that the specific surface area is one of the key factors in determining the electrochemical performance of LiMnPO4.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
 - 
			
                    [2]
                
			
(2) Kim, S.W.; Kim, J.; Gwon, H.; Kang, K. J. Electrochem. Soc. 2009, 156, A635.
 - 
			
                    [3]
                
			
(3) Chen, G.; Richardson, T. J. J. Power Sources 2010, 195, 1221. doi: 10.1016/j.jpowsour.2009.08.046
 - 
			
                    [4]
                
			
(4) Chen, G.; Richardson, T. J. J. Electrochem. Soc. 2009, 156, A756.
 - 
			
                    [5]
                
			
(5) Martha, S. K.; Markovsky, B.; Grinblat, J.; fer, Y.; Haik, O.; Zinigrad, E.; Aurbach, D.; Drezen, T.;Wang, D.; Deghenghi, G.; Exnar, I. J. Electrochem. Soc. 2009, 156, A541.
 - 
			
                    [6]
                
			
(6) Yamada, A.; Chung, S. C. J. Electrochem. Soc. 2001, 148, A960.
 - 
			
                    [7]
                
			
(7) Wang, D. Y.; Buqa, H.; Crouzel, M.; Deghenghi, G.; Drezen, T.; Exnar, I.; Miners, J.; Poletto, L.; Grätzel, M. J. Power Sources 2009, 189, 624. doi: 10.1016/j.jpowsour.2008.09.077
 - 
			
                    [8]
                
			
(8) Liu, J. L.; Liu, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2013, 229, 203. doi: 10.1016/j.jpowsour.2012.11.093
 - 
			
                    [9]
                
			
(9) Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. Chem. Mater. 2004, 16, 93. doi: 10.1021/cm030347b
 - 
			
                    [10]
                
			
(10) Kwon, N. H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Grätzel, M. Electrochem. Solid-State Lett. 2006, 9, A277.
 - 
			
                    [11]
                
			
(11) Yoshida, J.; Stark, M.; Holzbock, J.; Hüsing, N.; Nakanishi, S.; Iba, H.; Abe, H.; Naito, M. J. Power Sources 2013, 226, 122. doi: 10.1016/j.jpowsour.2012.09.081
 - 
			
                    [12]
                
			
(12) Pieczonka, N. P.W.; Liu, Z. Y.; Ash, F. H.; Kim, J. H. J. Power Sources 2013, 230, 122. doi: 10.1016/j.jpowsour.2012.12.027
 - 
			
                    [13]
                
			
(13) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Chem. Commun. 2008, 1118.
 - 
			
                    [14]
                
			
(14) Xiao, J.; Xu,W.; Choi, D.; Zhang, J. J. Electrochem. Soc. 2010, 157, A142.
 - 
			
                    [15]
                
			
(15) Oh, S. M.; Oh, S.W.; Yoon, C. S.; Scrosati, B.; Amine, K.; Sun, Y. K. Adv. Funct. Mater. 2010, 20, 3260. doi: 10.1002/adfm.201000469
 - 
			
                    [16]
                
			
(16) Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aubach, D. Angew. Chem. Int. Edit. 2009, 48, 8559. doi: 10.1002/anie.v48:45
 - 
			
                    [17]
                
			
(17) Wang, D. Y.; Ouyang, C. Y.; Kwon, N. H.; Drezen, T.; Buqa, H.; Exnar, I.; Kay, A.; Miners, J. H.;Wang, M. K.; Grätzel, M. J. Electrochem. Soc. 2010, 157, A225.
 - 
			
                    [18]
                
			
(18) Zhang, B.;Wang, X.; Liu, Z.; Li, H.; Huang, X. J. Electrochem. Soc. 2010, 157, A285.
 - 
			
                    [19]
                
			
(19) Shiratsuchi, T.; Okada, S.; Doi, T.; Yamak, J. I. Electrochim. Acta 2009, 54, 3145. doi: 10.1016/j.electacta.2008.11.069
 - 
			
                    [20]
                
			
(20) Feldmann, C. Adv. Funct. Mater. 2003, 13, 101. doi: 10.1002/adfm.v13:2
 - 
			
                    [21]
                
			
(21) Feldmann, C.; Metzmacher, C. J. Mater. Chem. 2001, 11, 122. doi: 10.1039/b103167h
 - 
			
                    [22]
                
			
(22) Larcher, D.; Gérand, B.; Tarascon, J. M. Electrochem. Solid- State Lett. 1998, 2, 137.
 - 
			
                    [23]
                
			
(23) Larcher, D.; Gérand, B.; Tarascon, J. M. Int. J. Inorg. Mater. 2000, 2, 389.
 - 
			
                    [24]
                
			
(24) Kim, D. H.; Ahn, Y. S.; Kim, J. Electrochem. Commun. 2005, 7, 1340. doi: 10.1016/j.elecom.2005.09.027
 - 
			
                    [25]
                
			
(25) Chang, X. Y.;Wang, Z. X.; Li, X. H.; Kuang, Q.; Pei,W. J.;Guo, H. J.; Zhang, Y. H. Acta Phys. -Chim. Sin. 2004, 20, 1249. [常晓燕, 王志兴, 李新海, 匡琼, 彭文杰, 郭华军, 张云河. 物理化学学报, 2004, 20, 1249.] doi: 10.3866/PKU.WHXB20041017
 - 
			
                    [26]
                
			
(26) Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.
 - 
			
                    [27]
                
			
(27) Kim, T. R.; Kim, D. H.; Ryu, H.W.; Moon, J. H.; Lee, J. H.; Boo, S. J. Phys. Chem. Solids 2007, 68, 1203. doi: 10.1016/j.jpcs.2007.03.027
 - 
			
                    [28]
                
			
(28) Vasanthi, R.; Kalpana, D.; Renganathan, N. G. Electrochem. Solid-State Lett. 2008, 12, 961.
 - 
			
                    [29]
                
			
(29) Choi, D.;Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z.;Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.; Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085
 - 
			
                    [30]
                
			
(30) Moon, S.; Muralidharan, P.; Kim, D. K. Ceram. Int. 2012, 38S, S471.
 - 
			
                    [31]
                
			
(31) Shi, S. Q.; Zhang, H.; Ke, X. Z.; Ouyang, C. Y.; Lei, M. S.; Chen, L. Q. Phys. Lett. A 2009, 373, 4096. doi: 10.1016/j.physleta.2009.09.014
 - 
			
                    [32]
                
			
(32) Andersson, A. S.; Thomas, J. O.; Kalska, B.; Haggstrom, L. Electrochem. Solid-State Lett. 2000, 3, 66.
 - 
			
                    [33]
                
			
(33) Nie, P.; Shen, L. F.; Chen, L.; Su, X. F.; Zhang, X. G.; Li, H. S. Acta Phys. -Chim. Sin. 2011, 27, 2123. [聂平, 申来法, 陈琳, 苏晓飞, 张校刚, 李洪森. 物理化学学报, 2011, 27, 2123.] doi: 10.3866/PKU.WHXB20110902
 - 
			
                    [34]
                
			
(34) Ji, H. M.; Yang, G.; Ni, H.; Roy, S.; Pinto, J.; Jiang, X. F. Electrochim. Acta 2011, 56, 3093. doi: 10.1016/j.electacta.2011.01.079
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
 - 
				[2]
				
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
 - 
				[3]
				
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
 - 
				[4]
				
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
 - 
				[5]
				
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
 - 
				[6]
				
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014
 - 
				[7]
				
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
 - 
				[8]
				
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
 - 
				[9]
				
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
 - 
				[10]
				
Xia Shu , Longtian Sima , Jiali Wang , Jiacheng Chu , Xieyidai·Yusunjiang , Mubareke·Maimaitijiang , Yingwei Lu , Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013
 - 
				[11]
				
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
 - 
				[12]
				
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
 - 
				[13]
				
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
 - 
				[14]
				
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
 - 
				[15]
				
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
 - 
				[16]
				
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
 - 
				[17]
				
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
 - 
				[18]
				
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
 - 
				[19]
				
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
 - 
				[20]
				
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(904)
 - Abstract views(1067)
 - HTML views(27)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: