Citation: ZHANG Shao-Long, ZHANG Lan-Lan, WANG Wu-Gang, MIN Yuan-Yuan, SONG Yu,  NG Yan-Jun, DOU Tao. Methanol to Propylene over Nanosheets of HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 535-543. doi: 10.3866/PKU.WHXB201401032 shu

Methanol to Propylene over Nanosheets of HZSM-5 Zeolite

  • Received Date: 29 November 2013
    Available Online: 3 January 2014

    Fund Project: 国家重点基础研究发展规划项目(973) (2012CB215002),国家自然科学基金(21276278,21176255) (973) (2012CB215002),国家自然科学基金(21276278,21176255)中国石油股份公司(2011A-2101)资助 (2011A-2101)

  • Nanosheets of HZSM-5 zeolite with different SiO2/Al2O3 molar ratios were synthesized, and their catalytic behavior in the methanol-to-propylene (MTP) reaction was evaluated in a fixed bed reactor. The effect of reaction conditions on catalytic performance was studied in detail. The catalytic performance of nanosheets of HZSM-5 zeolites in the MTP reaction was compared with that of the nanosized HZSM-5 zeolite. The nanosheets of HZSM-5 zeolite had higher propylene selectivity, total three olefins' selectivity (ethylene, propylene, C4 alkenes) , and a longer catalytic lifetime than the nanosized HZSM-5 zeolite. The nanosheets of HZSM-5 zeolite with a SiO2/Al2O3 molar ratio of 213 yielded a propylene selectivity of 46.7%, total three olefins' selectivity of 78.7% at 470 ℃, and a methanol weight hourly space velocity (WHSV) of 3 h-1. It also yielded a propylene/ethylene mass ratio of 6.5, which was double that of the nanosized HZSM-5 zeolite. The nanosheets of HZSM-5 zeolite had a lower aromatic selectivity than the nanosized HZSM-5 zeolite. The od MTP catalytic performance of the nanosheets of HZSM-5 zeolite was attributed to their wide (010) surface, high external surface area, and large mesoporous volume.

  • 加载中
    1. [1]

      (1) Lin, B. M.; Zhang, Q. H.;Wang, Y. Ind. Eng. Chem. Res. 2009, 48 (24), 10788. doi: 10.1021/ie901227p

    2. [2]

      (2) Rothaemel, M.; Holtmann, H. D. Erdöl Erdgas Kohle 2002, 118, 234.

    3. [3]

      (3) Teketel, S.; Skistad,W.; Benard, S.; Olsbye, U.; Lillerud, K. P.; Beato, P.; Svelle, S. ACS Catal. 2012, 2 (1), 26. doi: 10.1021/cs200517u

    4. [4]

      (4) Lacarriere, A.; Luck, F.; wierczy ski, D.; Fajula, F.; Hulea, V. Appl. Catal. A 2011, 402 (1-2), 208. doi: 10.1016/j.apcata.2011.06.003

    5. [5]

      (5) Li, J. Z.;Wei, Y. X.; Liu, G. Y.; Qi, Y.; Tian, P.; Li, B.; He, Y. L.; Liu, Z. M. Catal. Today 2011, 171 (1), 221. doi: 10.1016/j.cattod.2011.02.027

    6. [6]

      (6) Hu, S.; ng, Y. J.; Xu, Q. H.; Liu, X. L.; Zhang, Q.; Zhang, L. L.; Dou, T. Catal. Commun. 2012, 28, 95. doi: 10.1016/j.catcom.2012.08.011

    7. [7]

      (7) Masih, D.; Imai, H.; Yokoi, T.; Kondo, J. N.; Tatsumi, T. Catal. Commun. 2013, 37, 1. doi: 10.1016/j.catcom.2013.03.023

    8. [8]

      (8) Wei, R. C.; Li, C. Y.; Yang, C. H.; Shan, H. H. J. Nat. Gas Chem. 2011, 20, 261. doi: 10.1016/S1003-9953(10)60198-3

    9. [9]

      (9) Wang, Z. Y.; Li, J. L. Chem. React. Eng. Technol. 2008, 24 (5), 440. [王志彦, 李金来. 化学反应工程与工艺, 2008, 24 (5),440.]

    10. [10]

      (10) Firoozi, M.; Baghalha, M.; Asadi, M. Catal. Commun. 2009, 10, 1582. doi: 10.1016/j.catcom.2009.04.021

    11. [11]

      (11) Zhang,W.; Ren, L. J.; Guang, C.; Qi, J. Guangzhou Chem. Ind. 2012, 40 (2), 20. [张伟, 任立军, 关翀, 齐静. 广州化工, 2012, 40 (2), 20.]

    12. [12]

      (12) Mei, C. S.;Wen, P. Y.; Liu, Z. C.; Liu, H. X.;Wang, Y. D.; Yang, W. M.; Xie, Z. K.; Hua,W. M.; Gao, Z. J. Catal. 2008, 258, 243. doi: 10.1016/j.jcat.2008.06.019

    13. [13]

      (13) Kim, J.; Choi, M.; Ryoo, R. J. Catal. 2010, 269, 219. doi: 10.1016/j.jcat.2009.11.009

    14. [14]

      (14) Schmidt, F.; Hoffmann, C.; Giordanino, F.; Bordiga, S.; Simon, P.; Carrillo-Cabrera,W.; Kaskel, S. J. Catal. 2013, 307, 238.doi: 10.1016/j.jcat.2013.07.020

    15. [15]

      (15) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246. doi: 10.1038/nature08288

    16. [16]

      (16) Kim, J.; Park,W.; Ryoo, R. ACS Catal. 2011, 1 (4), 337. doi: 10.1021/cs100160g

    17. [17]

      (17) Seo, Y.; Cho, K.; Jung, Y.; Ryoo, R. ACS Catal. 2013, 3 (4), 713. doi: 10.1021/cs300824e

    18. [18]

      (18) Kim, J.; Kim,W.; Seo, Y.; Kim, J. C.; Ryoo, R. J. Catal. 2013, 301, 187. doi: 10.1016/j.jcat.2013.02.015

    19. [19]

      (19) Hu, S.; Shan, J.; Zhang, Q.;Wang, Y.; Liu, Y. S.; ng, Y. J.; Wu, Z. J.; Dou, T. Appl. Catal. A 2012, 445 -446, 215.

    20. [20]

      (20) Wang,W. G.; Zhang, S. L.; Zhang, L. L.;Wang, Y.; Liu, X. L.; ng, Y. J.; Dou, T. Acta Phys. -Chim. Sin. 2013, 29 (9), 2035. [王务刚, 张少龙, 张兰兰, 王艳, 刘晓玲, 巩雁军, 窦涛. 物理化学学报, 2013, 29 (9), 2035.] doi: 10.3866/PKU.WHXB201306183

    21. [21]

      (21) Stöcker, M. Microporous Mesoporous Mat. 1999, 29, 3. doi: 10.1016/S1387-1811(98)00319-9

    22. [22]

      (22) Zhao, T. S.; Takemoto, T.; Tsubaki, N. Catal. Commun. 2006, 7, 647. doi: 10.1016/j.catcom.2005.11.009

    23. [23]

      (23) Askari, S.; Halladj, R.; Sohrabi, M. Microporous Mesoporous Mat. 2012, 163, 334. doi: 10.1016/j.micromeso.2012.07.041

    24. [24]

      (24) Olsbye, U.; Svelle, S.; Bjørgen, M.; Beato, P.; Janssens, T. V. W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Angew. Chem. Int. Edit. 2012, 51, 5810. doi: 10.1002/anie.v51.24

    25. [25]

      (25) Yang, Y. S.; Sun, C.; Du, J. M.; Yue, Y. H.; Hua,W. M.; Zhang, C. L.; Shen,W.; Xu, H. L. Catal. Commun. 2012, 24, 44. doi: 10.1016/j.catcom.2012.03.013

    26. [26]

      (26) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. J. Catal. 2007, 249, 195. doi: 10.1016/j.jcat.2007.04.006

    27. [27]

      (27) Mao, D. S.; Guo, S. Q.; Meng, T.; Lu, G. Z. Acta Phys. -Chim. Sin. 2010, 26 (2), 338. [毛东森, 郭强胜, 孟涛, 卢冠忠. 物理化学学报, 2010, 26 (2), 338.] doi: 10.3866/PKU.WHXB20100208

    28. [28]

      (28) Fougerit, J. M.; Gnep, N. S.; Guisnet, M. Microporous Mesoporous Mat. 1999, 29, 79. doi: 10.1016/S1387-1811(98)00322-9

    29. [29]

      (29) Kaarsholm, M.; Joensen, F.; Nerlov, J.; Cenni, R.; Chaouki, J.; Patience, G. S. Chem. Eng. Sci. 2007, 62, 5527. doi: 10.1016/j.ces.2006.12.076

    30. [30]

      (30) Schulz, H. Catal. Today 2010, 154, 183. doi: 10.1016/j.cattod.2010.05.012

    31. [31]

      (31) Obrzut, D.; Adekkanattu, P.; Thundimadathil, J.; Liu, J.; Dubois, D.; Guin, J. React. Kinet. Catal. Lett. 2003, 80 (1), 113. doi: 10.1023/A:1026088327000

    32. [32]

      (32) Bjørgen, M.; Akyalcin, S.; Olsbye, U.; Benard, S.; Kolboe, S.; Svelle, S. J. Catal. 2010, 275 (1), 170. doi: 10.1016/j.jcat.2010.08.001

    33. [33]

      (33) Zhu, X. X.; Liu, S. L.; Niu, X. L.; Sun, X. D.; Bai, J.; Xu, L. Y. Petrochem. Technol. 2004, 33 (4), 320. [朱向学, 刘盛林, 牛雄雷, 孙新德, 白杰, 徐龙伢. 石油化工, 2004, 33 (4), 320.]

    34. [34]

      (34) Huang, Z. Y.; Ke, L.; Feng, J.; Liu, X.W.; Zhang, M. S. J. Mol. (China) 2008, 22 (1), 22. [黄志永, 柯丽, 冯静, 刘学武, 张明森. 分子催化, 2008, 22 (1), 22.]

    35. [35]

      (35) Guo, Q. S.; Mao, D. S.; Lao, Y. P.; Lu, G. Z. Chin. J. Catal. 2009, 30 (12), 1248. [郭强胜, 毛东森, 劳嫣萍, 卢冠忠. 催化学报, 2009, 30 (12), 1248.]

    36. [36]

      (36) Caro, J.; Noack, M.; Richter-Mendau, J.; Marlow, F.; Petersohn, D.; Griepentrog, M.; Kornatowski, J. J. Phys. Chem. 1993, 97, 13685. doi: 10.1021/j100153a043

    37. [37]

      (37) Bibby, D. M.; Milestone, N. B.; Patterson, J. E.; Aldridge, L. P. J. Catal. 1986, 97, 493. doi: 10.1016/0021-9517(86)90020-5

    38. [38]

      (38) Bibby, D. M.; Howe, R. F.; McLellan, G. D. Appl. Catal. A 1992, 93, 1. doi: 10.1016/0926-860X(92)80291-J


  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    8. [8]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(944)
  • Abstract views(923)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return