Citation: GAO Su-Wen, LAN Zhang, WU Wan-Xia, QUE Lan-Fang, WU Ji-Huai, LIN Jian-Ming, HUANG Miao-Liang. Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 446-452. doi: 10.3866/PKU.WHXB201401022 shu

Fabrication and Photovoltaic Performance of High Efficiency Front-Illuminated Dye-Sensitized Solar Cell Based on Ordered TiO2 Nanotube Arrays

  • Received Date: 15 November 2013
    Available Online: 2 January 2014

    Fund Project: 国家自然科学基金(U1205112,51002053),教育部科技重点项目(212206),福建省高校杰出青年研究人才计划项目,福建省高校新世纪优秀人才支持计划项目和华侨大学中青年教师科研提升资助计划(ZQN-YX102)资助 (U1205112,51002053),教育部科技重点项目(212206),福建省高校杰出青年研究人才计划项目,福建省高校新世纪优秀人才支持计划项目和华侨大学中青年教师科研提升资助计划(ZQN-YX102)

  • An efficient front-illuminated dye-sensitized solar cell (DSSC) based on ordered TiO2 nanotube (TNT) arrays was prepared. Sintering at 450 ℃ avoided damage of the ordered TNTs during HF treatment. Fast electron transport channels were maintained in the membrane, for efficient charge transportat in the DSSC. The sintered TNT membranes were subsequently treated with HF, TiCl4, and HF combined with TiCl4. This formed a rougher surface, and allowed increased dye loadings. The increased dye loading improved the light harvesting efficiency of the photoanode at 300-570 nm wavelength range, which is the main absorption region of the adsorbed dye. The adsorbed dye had a low absorption at 570-800 nm wavelength range. The enhanced light harvesting efficiency of the photoanode originated from its increased diffuse reflectance. The incident-photon-to-current and absorbed-photon-to-current conversion efficiencies were increased over the entire 300-800 nm wavelength range. This resulted in an increased short-circuit current density of the DSSC. Electrochemical impedance spectroscopy indicated that electron transport and related parameters including charge transport resistance, interfacial charge recombination resistance, distributed chemical capacitance, electron lifetime, effective electron diffusion length, and collection efficiency were significantly improved in the DSSC containing the treated TNT photoanode. This also resulted in an enhanced photovoltaic performance. The maximum power conversion efficiency from combining HF and TiCl4 treatments was 7.30%, which was a 35.69% enhancement compared with the nontreated DSSC (5.38%).

  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Bella, F.; Bongiovanni, R.; Kumar, R. S.; Kulandainathan, M. A.; Stephanc, A. M. J. Mater. Chem. A 2013, 1, 9033. doi: 10.1039/c3ta12135f

    3. [3]

      (3) Xin, X.; He, M.; Han,W.; Jung, J.; Lin, Z. Angew. Chem. Int. Edit. 2011, 50, 11739. doi: 10.1002/anie.201104786

    4. [4]

      (4) Grätzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607

    5. [5]

      (5) Shu,W.; Liu, Y.; Peng, Z.; Chen, K.; Zhang, C.; Chen,W. J. Alloy. Compd. 2013, 563, 229. doi: 10.1016/j.jallcom.2013.02.086

    6. [6]

      (6) Frank, J.; Kopidakis, N.; Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165. doi: 10.1016/j.ccr.2004.03.015

    7. [7]

      (7) (a) Liu, R. H.; Zhang, S.; Xia, X. Y.; Yun, D. Q.; Bian, Z. Q.; Zhao, Y. L. Acta Phys. -Chim. Sin. 2011, 27, 1701. [刘润花, 张森, 夏新元, 云大钦, 卞祖强, 赵永亮. 物理化学学报, 2011, 27, 1701.] doi: 10.3866/PKU.WHXB20110734

    8. [8]

      (b) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Inorg. Mater. 2011, 26, 119. [兰章, 吴季怀, 林建明, 黄妙良. 无机材料学报, 2011, 26, 119.]

    9. [9]

      (8) (a) Xiao, Y. M.;Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z. Acta Phys. -Chim. Sin. 2012, 28, 578. [肖尧明, 吴季怀, 岳根田, 林建明, 黄妙良, 范乐庆, 兰章. 物理化学学报, 2012, 28, 578.] doi: 10.3866/PKU.WHXB201201032

    10. [10]

      (b) Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M. T.; Latempa, J.; Grimes, C. A. Nano Lett. 2008, 8, 3781.

    11. [11]

      (9) (a) Zhang, Z. Y.; Sang, L. X.; Sun, B.; Zhang, X. M.; Ma, C. F. Acta Phys. -Chim. Sin. 2010, 26, 2935. [张知宇, 桑丽霞, 孙彪, 张晓敏, 马重芳. 物理化学学报, 2010, 26, 2935.] doi: 10.3866/PKU.WHXB20101131

    12. [12]

      (b) Hyeokapark, J.; Guakang, M. Chem. Commun. 2008, 2867. (10) (a) Li, H. H.; Chen, R. F.; Ma, Z.; Zhang, S. L.; An, Z. F.; Huang,W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢,陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.] doi: 10.3866/PKU.WHXB20110514

    13. [13]

      (b) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, G. A. Nano Lett. 2006, 6, 215.

    14. [14]

      (11) Jun, Y.; Park, J. H.; Kang, M. G. Chem. Commun. 2012, 48, 6456. doi: 10.1039/c2cc30733b

    15. [15]

      (12) (a) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939. [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.] doi: 10.3866/PKU.WHXB20110401

    16. [16]

      (b) Chang,W. T.; Hsueh, Y. C.; Huang, S. H.; Liu, K. I.; Kei, C. C.; Perng, T. P. J. Mater. Chem. A 2013, 1, 1987.

    17. [17]

      (13) Zhang, Z.;Wang, P. Energy Environ. Sci. 2012, 5, 6506. doi: 10.1039/c2ee03461a

    18. [18]

      (14) Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2008, 2, 1113. doi: 10.1021/nn800174y

    19. [19]

      (15) Zhang, T.; Hu, X.; Fang, M.; Zhang, L.;Wang, Z. CrystEngComm 2012, 14, 7656. doi: 10.1039/c2ce25323b

    20. [20]

      (16) Tao, L.; Xiong, Y.; Liu, H.; Shen,W. J. Mater. Chem. 2012, 22, 7863. doi: 10.1039/c2jm00005a

    21. [21]

      (17) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2011, 21, 15552. doi: 10.1039/c1jm12812d

    22. [22]

      (18) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Chem. 2012, 22, 3948. doi: 10.1039/c2jm15019k

    23. [23]

      (19) Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945. doi: 10.1021/jp052768h

    24. [24]

      (20) Lan, Z.;Wu, J. H.; Lin, J. M.; Huang, M. L. J. Mater. Sci.: Mater. Electron. 2010, 21, 833. doi: 10.1007/s10854-009-0003-4

    25. [25]

      (21) Choi, J.; Park, S. H.; Kwon, Y. S.; Lim, J.; Song, I. Y.; Park, T. Chem. Commun. 2012, 48, 8748. doi: 10.1039/c2cc33629d

    26. [26]

      (22) Yip, C. T.; Guo, M.; Huang, H.; Zhou, L.;Wang, Y.; Huang, C. Nanoscale 2012, 4, 448. doi: 10.1039/c2nr11317a

    27. [27]

      (23) Huang, F.; Chen, D.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301. doi: 10.1002/adfm.v20:8

    28. [28]

      (24) Yanagida, M.; Yamaguchi, T.; Kurashige, M.; Hara, K.; Katoh, R.; Sugihara, H.; Arakawa, H. Inorg. Chem. 2003, 42, 7921. doi: 10.1021/ic034674x

    29. [29]

      (25) Wang, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem. B 2001, 105, 9210. doi: 10.1021/jp010667n

    30. [30]

      (26) Bisquert, J.; Belmonte, G. G.; Santia , F. F.; Ferriols, N. S.; Bogdanoff, P.; Pereira, E. C. J. Phys. Chem. B 2000, 104, 2287. doi: 10.1021/jp993148h


  • 加载中
    1. [1]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    13. [13]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    16. [16]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(719)
  • Abstract views(843)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return