Citation:
	            
		            ZHONG  Xiao-Cong, GUI  Jun-Feng, YU  Xiao-Ying, LIU  Fang-Yang, JIANG  Liang-Xing, LAI  Yan-Qing, LI  Jie, LIU  Ye-Xiang. Influence of Alloying Element Nd on the Electrochemical Behavior of Pb-Ag Anode in H2SO4 Solution[J]. Acta Physico-Chimica Sinica,
							;2014, 30(3): 492-499.
						
							doi:
								10.3866/PKU.WHXB201312301
						
					
				
					
				
	        
- 
	                	
Anodic layers and oxygen evolution reaction (OER) of Pb-Ag and Pb-Ag-Nd anodes were investigated by cyclic voltammetry, linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and environmental scanning electron microscopy (ESEM). Alloying with Nd promoted the formation of Pb/PbOn/PbSO4 (1≤n<2). Nd facilitated the transformation of PbOn and PbSO4 to α-PbO2 and β-PbO2, at potential above 1.2 V vs Hg/Hg2SO4 (saturated K2SO4 solution). ESEM and LSV indicated that the anodic layer formed on the Pb-Ag-Nd anode was thicker and more compact than that formed on the Pb-Ag anode. Consequently, the anodic layer on the Pb-Ag-Nd anode could provide better protection for metallic substrates. EIS indicated that the OER was determined by the formation and adsorption of intermediates. Nd enhanced the OER reactivity, because of a smaller adsorption resistance and larger coverage of intermediates at the anodic layer/electrolyte interface. In summary, alloying with Nd can enhance the corrosion resistance and reduce the energy consumption of Pb-Ag anode due to lower anodic potential.
 - 
	                	
	                 - 
	                	
- 
			
                    [1]
                
			
(1) (a) Lai, Y. Q.; Jiang, L. X.; Li, J.; Zhong, S. P.; Lv, X. J.; Peng, H. Z.; Liu, Y. X. Hydrometallurgy 2010, 102 (1-4), 73. doi: 10.1016/j.hydromet.2010.02.012
 - 
			
                    [2]
                
			
(b) Newnham, R. H. J. Appl. Electrochem. 1992, 22 (2), 116.
 - 
			
                    [3]
                
			
(c) Petrova, M.; Noncheva, Z.; Dobrev, T.; Rashkov, Kunchev, N.; Petrov, D.; Vlaev, S.; Mihnev, V.; Zarev, S. Hydrometallurgy 1996, 40 (3), 319. doi: 10.1016/0304-386X(95)00010-E
 - 
			
                    [4]
                
			
(4) Clancy, M.; Bettles, C. J.; Stuart, A.; Birbilis, N. Hydrometallurgy 2013, 131-132, 144.
 - 
			
                    [5]
                
			
(5) Hong, B.; Jiang, L. X.; Lv, X. J.; Ni, H. F.; Lai, Y. Q.; Li, J.; Liu, Y. X. T. Nonferr. Metal Soc. 2012, 22 (4), 1126. [洪波, 蒋良兴, 吕晓军, 倪恒发, 赖延清, 李劼, 刘业翔. 中国有色金属学报, 2012, 22 (4), 1126.]
 - 
			
                    [6]
                
			
(6) (a) Pavlov, D.; Poulieff, C.; Klaja, E.; Iordanov, N. J. Electrochem. Soc. 1969, 116, 316. doi: 10.1149/1.2411836
 - 
			
                    [7]
                
			
(b) Monahov, B.; Pavlov, D. J. Appl. Electrochem. 1993, 23 (12), 1244.
 - 
			
                    [8]
                
			
(c) Ho, J.; Simpraga, R.; Conway, B. J. Electroanal. Chem. 1994, 366 (1), 147.
 - 
			
                    [9]
                
			
(d) Li, H.; Guo,W. X.; Chen, H. Y.; Finlow, D. E.; Zhou, H.W.; Dou, C. L.; Xiao, G. M.; Peng, S. G.;Wei,W.W.;Wang, H. J. Power Sources 2009, 191 (1), 111.
 - 
			
                    [10]
                
			
(7) Burbank, J. J. Electrochem. Soc. 1959, 106, 369. doi: 10.1149/1.2427362
 - 
			
                    [11]
                
			
(8) (a) Babi , R.; Metiko -Hukovi , M.; Lajqy, N.; Brini , S. J. Power Sources 1994, 52 (1), 17. doi: 10.1016/0378-7753(94)01925-8
 - 
			
                    [12]
                
			
(b) Dobrev, T.; Valchanova, I.; Stefanov, Y.; Magaeva, S. Trans. Inst. Met. Finish. 2009, 87 (3), 136.
 - 
			
                    [13]
                
			
(c) Ijomah, M. J. Electrochem. Soc. 1987, 134 (12), 2960.
 - 
			
                    [14]
                
			
(d) Buchanan, J.; Peter, L. Electrochim. Acta 1988, 33 (1), 127.
 - 
			
                    [15]
                
			
(e) Ijomah, M. J. Appl. Electrochem. 1988, 18 (1), 142.
 - 
			
                    [16]
                
			
(f) Varela, F.; Gassa, L.; Vilche, J. Electrochim. Acta 1992, 37 (6), 1119.
 - 
			
                    [17]
                
			
(9) Sharpe, T. F. J. Electrochem. Soc. 1977, 124 (2), 168. doi: 10.1149/1.2133259
 - 
			
                    [18]
                
			
(10) Czerwinski, A.; Zelazowska, M.; Grden, M.; Kuc, K.; Milewski, J.; Nowacki, A.;Wojcik, G.; Kopczyk, M. J. Power Sources 2000, 85 (1), 49. doi: 10.1016/S0378-7753(99)00381-X
 - 
			
                    [19]
                
			
(11) Guo, Y. L. J. Electrochem. Soc. 1991, 138 (5), 1222. doi: 10.1149/1.2085763
 - 
			
                    [20]
                
			
(12) Sun, Q. J.; Guo, Y. L. J. Electroanal. Chem. 2000, 493 (1), 123.
 - 
			
                    [21]
                
			
(13) Hu, J. M.; Zhang, J. Q.; Cao, C. N. Int. J. Hydrog. Energy 2004, 29 (8), 791. doi: 10.1016/j.ijhydene.2003.09.007
 - 
			
                    [22]
                
			
(14) Rerolle, C.;Wiart, R. Electrochim. Acta 1995, 40 (8), 939. doi: 10.1016/0013-4686(95)00026-B
 - 
			
                    [23]
                
			
(15) (a) Yang, C. J.; Ko, Y.; Park, S. M. Electrochim. Acta 2012, 78, 615. doi: 10.1016/j.electacta.2012.06.055
 - 
			
                    [24]
                
			
(b) Conway, B. E.; Liu, T., Langmuir 1990, 6 (1), 268.
 - 
			
                    [25]
                
			
(c) Li,W.; Chen, H.; Long, X.;Wu, F.;Wu, Y.; Yan, J.; Zhang, C. J. Power Sources 2006, 158 (2), 902.
 - 
			
                    [26]
                
			
(d) Zhang,W.; Houlachi, G. Hydrometallurgy 2010, 104 (2), 129.
 - 
			
                    [27]
                
			
(e) Ye, Z. G.; Meng, H. M.; Sun, D. B. Electrochim. Acta 2008, 53 (18), 5639.
 - 
			
                    [28]
                
			
(16) (a) Palmas, S.; Polcaro, A.; Ferrara, F.; Ruiz, J. R.; Delogu, F.; Bonatto-Minella, C.; Mulas, G. J. Appl. Electrochem. 2008, 38 (7), 907. doi: 10.1007/s10800-008-9494-6
 - 
			
                    [29]
                
			
(b) Cao, C. N. Electrochim. Acta 1990, 35 (5), 831.
 - 
			
                    [30]
                
			
(17) (a) Alves, V.; Da Silva, L.; Boodts, J. Electrochim. Acta 1998, 44 (8-9), 1525. doi: 10.1016/S0013-4686(98)00276-X
 - 
			
                    [31]
                
			
(b) Franco, D. V.; Silva, L. M. D.; Jardim,W. F.; Boodts, J. F. J. Brazil. Chem. Soc. 2006, 17 (4), 446.
 - 
			
                    [32]
                
			
(18) Brug, G. J.; van den Eeden, A. L. G.; Sluyters-Rehbach, M.; Sluyters, J. H. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176 (1-2), 275.
 - 
			
                    [33]
                
			
(19) Martelli, G. N.; Ornelas, R.; Faita, G. Electrochim. Acta 1994, 39 (11-12), 1551.
 - 
			
                    [34]
                
			
(20) Lai, Y. Q.; Li, Y.; Jiang, L. X.; Xu,W.; Lv, X. J.; Li, J.; Liu, Y. X. J. Electroanal. Chem. 2012, 671, 16. doi: 10.1016/j.jelechem.2012.02.011
 
 - 
			
                    [1]
                
			
 - 
	                	
						
						
						
						
	                 - 
	                	
- 
				[1]
				
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
 - 
				[2]
				
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
 - 
				[3]
				
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
 - 
				[4]
				
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
 - 
				[5]
				
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
 - 
				[6]
				
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
 - 
				[7]
				
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021
 - 
				[8]
				
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
 - 
				[9]
				
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
 - 
				[10]
				
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
 - 
				[11]
				
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
 - 
				[12]
				
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
 - 
				[13]
				
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
 - 
				[14]
				
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
 - 
				[15]
				
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
 - 
				[16]
				
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
 - 
				[17]
				
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
 - 
				[18]
				
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
 - 
				[19]
				
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043
 - 
				[20]
				
Shuyu Liu , Xiaomin Sun , Bohan Song , Gaofeng Zeng , Bingbing Du , Chongshen Guo , Cong Wang , Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113
 
 - 
				[1]
				
 
Metrics
- PDF Downloads(602)
 - Abstract views(883)
 - HTML views(18)
 
 
Login In
	                    
	                    
	                    
	                    
DownLoad: