Citation: WANG Jian, WANG Shao-Qing. Correlation between Galvanic Corrosion and Electronic Work Function of Al Alloy Surfaces[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 551-558. doi: 10.3866/PKU.WHXB201312272 shu

Correlation between Galvanic Corrosion and Electronic Work Function of Al Alloy Surfaces

  • Received Date: 11 October 2013
    Available Online: 27 December 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB606403)资助 (973) (2011CB606403)

  • Al alloys contain some secondary phases to improve their properties. These secondary phases have different potentials to the Al matrix, which greatly affect the localized corrosion of Al alloys. In order to reveal the physical nature of Al alloy corrosion, we use the first-principles method based upon density functional theory to calculate the work function of the main secondary phases (Al2Cu, Al3Ti, and Al7Cu2Fe). The difficulty of electrons escaping from various crystal planes was analyzed, and the potential difference between the secondary phases and Al matrix was obtained. We find that different crystal planes exposed to the outmost layer significantly impacted on the potential difference. Different atomic types at the outmost layer play different roles in Al alloy corrosion, even for the same crystal surface. The causes of galvanic corrosion were thus revealed.

  • 加载中
    1. [1]

      (1) Grilli R. Corrosion Sci. 2011, 53, 1214. doi: 10.1016/j.corsci.2010.12.006

    2. [2]

      (2) Ma, J. L.;Wen, L. B.; Li, X. D.; Zhao, S. L.; Yan, Y. F. Rare Metals 2009, 28, 187. doi: 10.1007/s12598-009-0037-z

    3. [3]

      (3) Cai, J. P.; Lu, F.;Wu, X. M. J. Aeronaut. Mater. 2006, 26 (3), 271. [蔡健平, 陆峰, 吴小美. 航空材料学报, 2006, 26 (3),271.]

    4. [4]

      (4) Li, L. J. Corros. Sci. Prot. Technol. 2004, 16 (5), 342. [李丽洁. 腐蚀科学与防护技术, 2004, 16 (5), 342.]

    5. [5]

      (5) DeRose, J. A.; Suter, T.; Balkowiec, A.; Michalski, J.; Kurzydlowski, K. J.; Schmutz, P. Corrosion Sci. 2012, 55, 313. doi: 10.1016/j.corsci.2011.10.035

    6. [6]

      (6) Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J. Electrochim. Acta 2006, 51, 5892. doi: 10.1016/j.electacta.2006.03.027

    7. [7]

      (7) Zaldívar-Cadena, A. A.; Flores-Valdés, A. Mater. Charact. 2007, 58, 834. doi: 10.1016/j.matchar.2006.12.006

    8. [8]

      (8) Afshar, F. N.; Glenn, A. M.; deWit, J. H.W.; Terryn, H.; Mol, J. M. C. Electrochim. Acta 2013, 104, 48. doi: 10.1016/j.electacta.2013.04.080

    9. [9]

      (9) Peter; C. K.; Ivan, S. C.; Penny, A. C.; Anthony, E. H.; Tim, H. M. Corrosion Sci. 2011, 53, 1086. doi: 10.1016/j.corsci.2010.12.004

    10. [10]

      (10) Peter, C. K.; Ivan, S. C.; Penny, A. C.; Anthony, E. H.; Tim, H. M.; Sebastian, T. Corrosion Sci. 2012, 55, 116. doi: 10.1016/j.corsci.2011.10.012

    11. [11]

      (11) Guillaumin, V.; Schmutz, P.; Frankel, G. S. J. Electrochem. Soc. 2001, 148 (5), B163.

    12. [12]

      (12) Liu,W. J.; Cao, F. H.; Chen, A. N.; Chang, L. R.; Zhang, J. Q.; Cao, C. Corrosion Sci. 2010, 52, 627. doi: 10.1016/j.corsci.2009.10.031

    13. [13]

      (13) Schmutz, P.; Frankel, G. S. J. Electrochem. Soc.1998, 145 (7), 2295. doi: 10.1149/1.1838634

    14. [14]

      (14) Shao, M. H.; Fu, Y.; Hu, R. G.; Lin, C. J. Acta Phys. -Chim. Sin. 2002, 18 (4), 350. [邵敏华, 付燕, 胡融刚, 林昌健. 物理化学学报, 2002, 18 (4), 350.] doi: 10.3866/PKU.WHXB20020413

    15. [15]

      (15) Birbilis, N.; Buchheit, R. G. J. Electrochem. Soc. 2005, 152 (4), B140.

    16. [16]

      (16) Zhao, Y.; Xue,W. B.; Liu, H. F. Acta Phys. -Chim. Sin. 2011, 27 (11), 2618. [赵勇, 薛文斌, 刘宏芳. 物理化学学报, 2011, 27 (11), 2618.] doi: 10.3866/PKU.WHXB20111109

    17. [17]

      (17) Schmutz, P.; Frankel, G. S. J. Electrochem. Soc. 1998, 145 (7), 2285. doi: 10.1149/1.1838633

    18. [18]

      (18) deWit, J. H.W. Electrochim. Acta 2001, 46, 3641. doi: 10.1016/S0013-4686(01)00642-9

    19. [19]

      (19) deWit, J. H.W. Electrochim. Acta 2004, 49, 2841. doi: 10.1016/j.electacta.2004.01.045

    20. [20]

      (20) Andreatta, F.; Terryn, H.; deWit, J. H.W. Electrochim. Acta 2004, 49, 2851. doi: 10.1016/j.electacta.2004.01.046

    21. [21]

      (21) Rohwerder, M.; Turcu, F. Electrochim. Acta 2007, 53, 290. doi: 10.1016/j.electacta.2007.03.016

    22. [22]

      (22) Zhang, G. Y.; Zhang, H.; Fang, G. L.; Yang, L. N. Acta Metall. Sin. 2009, 45, 687. [张国英, 张辉, 方戈亮, 杨丽娜. 金属学报, 2009, 45, 687.]

    23. [23]

      (23) Zhang, G. Y.; Zhang, H.; Zhao, Z. F.; Li, Y. C. Acta Phys. Sin. 2006, 55, 2439. [张国英, 张辉, 赵子夫, 李昱材. 物理学报, 2006, 55, 2439.]

    24. [24]

      (24) Zhang, G. Y.; Zhang, H.; Fang, G. L.; Li, Y. C. Acta Phys. Sin. 2005, 54, 5288. [张国英, 张辉, 方戈亮, 李昱材. 物理学报, 2006, 54, 5288.]

    25. [25]

      (25) Huang, K.; Han, R. Q. Solid State physics; Higher Education Press: Beijing, 1988; pp 286-290. [黄昆, 韩汝琦. 固体物理学. 北京: 高等教育出版社, 1988: 286-290.]

    26. [26]

      (26) Fang, J. X.; Lu, D. Solid State Physics, Volume 1; Shanghai Science and Technology Press: Shanghai, 1980; pp 196-200. [方俊鑫, 陆栋. 固体物理学. 上册. 上海: 上海科学技术出版社, 1980: 196-200.]

    27. [27]

      (27) Lee, R. N.; Farnsworth H. E. Surf. Sci. 1965, 3, 461. doi: 10.1016/0039-6028(65)90026-9

    28. [28]

      (28) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953

    29. [29]

      (29) Perdew, J. P.; Burke, K. Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    30. [30]

      (30) Neugebauer, J.; Scheffler, M. Phys. Rev. B 1992, 46 (24), 16067. doi: 10.1103/PhysRevB.46.16067

    31. [31]

      (31) Singh-Miller, N. E.; Marzari, N. Phys. Rev. B 2009, 80, 235407. doi: 10.1103/PhysRevB.80.235407

    32. [32]

      (32) Grepstad, J. K.; Gartland, P. O.; Slagsvold, B. J. Surf. Sci. 1976, 57, 348. doi: 10.1016/0039-6028(76)90187-4

    33. [33]

      (33) Fall, C. J.; Binggeli, N.; Baldereschi, A. Phys. Rev. B 1998, 58 (12), R7544.

    34. [34]

      (34) Ogle, K.; Serdechnova, M.; Mokaddem, M.; Volovitch, P. Electrochim. Acta 2011, 56 (4), 1711. doi: 10.1016/j.electacta.2010.09.058

    35. [35]

      (35) Osorio,W. R.; Spinelli, J. E.; Ferreira, I. L.; Garcia, A. Electrochim. Acta 2007, 52, 3265. doi: 10.1016/j.electacta.2006.10.004

    36. [36]

      (36) Li, J. F.; Zheng, Z. Q.; Jiang, N.; Tan, C. Y. Mater. Chem. Phys. 2005, 91, 325.

    37. [37]

      (37) Liu,W. B.; Zhang, S. C.; Li, N.; Zheng, J.W.; An, S. S.; Xing, Y. L. Int. J. Electrochem. Sci. 2012, 7, 2240.

    38. [38]

      (38) Oltra, R.; Vuillemin, B.; Rechou, F.; Henon, C. Electrochem. Solid-State Lett. 2009, 12 (12), C29

    39. [39]

      (39) Gao, K.; Li, S. M.; Fu, H. Z. Adv. Mater. Lett. 2011, 2 (5), 368.

    40. [40]

      (40) Meetsma, A.; de Boer, J. L.; Van Smaalen, S. J. Solid State Chem.1989, 83, 370. doi: 10.1016/0022-4596(89)90188-6

    41. [41]

      (41) Srinivasan, S.; Desch, P. B.; Schwarz, R. B. Scr. Metall. Mater. 1991, 25, 2513. doi: 10.1016/0956-716X(91)90059-A

    42. [42]

      (42) Wang, S. C.; Starink, M. J. Int. Mater. Rev. 2005, 50, 193. doi: 10.1179/174328005X14357

    43. [43]

      (43) deWit, J. H.W. Electrochim. Acta 2004, 49, 17.


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    6. [6]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    7. [7]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    10. [10]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(658)
  • Abstract views(1184)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return