Citation: LIN Xu-Feng, XI Yan-Yan, LIN De-Lian. Controllable Synthesis of ZnxCd1-xS Nanowires with Tunable Optical Properties[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 576-582. doi: 10.3866/PKU.WHXB201312232
-
ZnxCd1-xS (0< x <1) nanowires with several different compositions were successfully synthesized on Si wafers by a simple vapor deposition method using Au as a catalyst. The morphology and composition of the nanowires were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results show that the Zn/Cd ratio is controllable by adjusting the relative amount of the starting materials and the deposition temperature. The X- ray diffraction patterns show that the nanowires are single crystals with the wurtzite structure. The morphology character of the nanowires suggests that the growth of the nanowires can be explained by the base-growth mechanism. The optical characteristics of the nanowires were studied by Raman and photoluminescence (PL) spectroscopy. Raman shifts of the longitudinal optical (LO) phonon mode were observed in the ZnxCd1-xS nanowires. The LO peak frequency changed smoothly with changing composition, which approximately shows a one-mode behavior pattern in the ZnxCd1- xS nanowires. In the PL spectra, both band-gap and defect emission were observed. The PL results indicate that the emission frequency originating from the band-gap transition of the ZnxCd1-xS nanowires can be tuned through modulating of the composition. The band-gap of the nanowires can be tuned from 2.41 eV (CdS) to 3.63 eV (ZnS).
-
-
[1]
(1) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.;Wu, Y. Y.; Kind, H.;Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897. doi: 10.1126/science.1060367
-
[2]
(2) Bando, K.; Sawabe, T.; Asaka, K.; Masumoto, Y. J. Lumin. 2004, 108, 385. doi: 10.1016/j.jlumin.2004.01.081
-
[3]
(3) Hu, C.; Zeng, X. H.; Cui, J. Y.; Chen, H. T.; Lu, J. F. J. Phys. Chem. C 2013, 117, 20998. doi: 10.1021/jp407272u
-
[4]
(4) Duan, X.; Hu, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 24.
-
[5]
(5) Kind, Y. H.; Messer, B.; Law, M.; Yang, P. D. Adv. Mater. 2002, 14, 158.
-
[6]
(6) Brus, L. E. J. Chem. Phys. 1984, 80, 4403. doi: 10.1063/1.447218
-
[7]
(7) Gudiksen, M. S.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 8801. doi: 10.1021/ja002008e
-
[8]
(8) Gudiksen, M. S.;Wang, J.; Lieber, C. M. J. Phys. Chem. B 2002, 106, 4036. doi: 10.1021/jp014392n
-
[9]
(9) Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Science 2003, 299, 1874. doi: 10.1126/science.1080313
-
[10]
(10) Peng, K. Q.;Wang, X.; Li, L.; Hu, Y.; Lee, S. T. Nano Today 2013, 8, 75. doi: 10.1016/j.nantod.2012.12.009
-
[11]
(11) Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K. Appl. Phys. Lett. 2005, 87, 033108. doi: 10.1063/1.1997271
-
[12]
(12) Zhang, X. T.; Liu, Z.; Liu, Q.; Hark, S. K. J. Phys. Chem. B 2005, 109, 17913. doi: 10.1021/jp0527406
-
[13]
(13) Averin, S. V.; Kuznetsov, P. I.; Zhitov, V. A.; Alkeev, N. V.; Kotov, V. M.; Zakharov, L. Y.; Gladysheva, N. B. Tech. Phys. 2012, 82, 49.
-
[14]
(14) Hou, J.W.; Song, B.; Zhang, Z. H.;Wang,W. J.;Wu, R.; Sun, Y. F.; Zheng, Y. F.; Ding, P.; Jian, J. K. Acta Physico-Chimica Sinica 2009, 25, 724. [侯军伟, 宋波, 张志华, 王文军, 吴荣, 孙言飞, 郑毓峰, 丁芃, 简基康. 物理化学学报, 2009, 25, 724.] doi: 10.3866/PKU.WHXB20090428
-
[15]
(15) Liang, Y. Q.; Zhai, L.; Zhao, X. S.; Xu, D. S. J. Phys. Chem. B 2005, 109, 7120. doi: 10.1021/jp045566e
-
[16]
(16) Liu, Y.; Zapien, J. A.; Shan, Y. Y.; Geng, C. Y.; Lee, C. S.; Lee, S. T. Adv. Mater. 2005, 17, 1372.
-
[17]
(17) Venu pal, R.; Lin, P. I.; Chen, Y. T. J. Phys. Chem. B 2006, 110, 11691. doi: 10.1021/jp056892c
-
[18]
(18) Wu, H.; Yao, Y.; Li,W.; Zhu, L.; Ni, N.; Zhang, X. J. Nanopart. Res. 2011, 13, 2225. doi: 10.1007/s11051-010-9981-7
-
[19]
(19) Mahdi, M. A.; Hassan, J. J.; Hassan, Z.; Ng, S. S. Journal of Alloys and Compounds 2012, 541, 227. doi: 10.1016/j.jallcom.2012.05.123
-
[20]
(20) Huang, Y.; Duan, X. F.; Lieber, C. M. Small 2005, 1, 142.
-
[21]
(21) Mcalpine, C. M.; Friedman, R. S.; Lieber, C. M. Proc. IEEE 2005, 93, 1357. doi: 10.1109/JPROC.2005.850308
-
[22]
(22) Sirbuly, D. J.; Law, M.; Yan, H. Q.; Yang, P. D. J. Phys. Chem. B 2005, 109, 15190. doi: 10.1021/jp051813i
-
[23]
(23) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455. doi: 10.1038/nmat1387
-
[24]
(24) Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100. doi: 10.1021/ja035000o
-
[25]
(25) Wei, H.; Ren, X. L.; Han, Z. Y.; Li, T. T.; Su, Y. J.;Wei, L. M.; Cong, F. S.; Zhang, Y. F. Mater. Lett. 2013, 102, 94
-
[26]
(26) Xi, Y. Y.; Cheung, T. L. Y.; Ng, D. H. L. Mater. Lett. 2008, 62, 128. doi: 10.1016/j.matlet.2007.04.094
-
[27]
(27) Rincon, M. E.; Martinez, M.W.; Miranda-Hernandez, M. Solar Energy Materials & Solar Cells 2003, 77, 25. doi: 10.1016/S0927-0248(02)00242-8
-
[28]
(28) Sainova, D. S.; Zen, A.; Nothofer, H. H.; Asawapirom, U.; Scherf, U.; Hagen, R.; Bieringer, T.; Kostromine, S.; Neher, D. Adv. Funct. Mater. 2002, 12, 49. doi: 10.1002/1616-3028(20020101)12:1<49::AID-ADFM49>3.0.CO;2-D
-
[29]
(29) Ballentyne, D.W. G.; Ray, B. Physica 1961, 27, 337. doi: 10.1016/0031-8914(61)90106-9
-
[30]
(30) Shimaoka, G.; Suzuki, Y. Appl. Surf. Sci. 1997, 113, 528.
-
[31]
(31) Kar, S.; Satpati, B.; Satyam, P. V.; Chaudhuri, S. J. Phys. Chem. B 2005, 109, 19134. doi: 10.1021/jp052600w
-
[32]
(32) Kim, H.W.; Shim, S. H. Chem. Phys. Lett. 2006, 422, 165. doi: 10.1016/j.cplett.2006.02.062
-
[33]
(33) Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
-
[34]
(34) Wu, Z. H.; Sun, M.; Mei, X. Y.; Ruda, H. E. Appl. Phys. Lett. 2004, 85, 657. doi: 10.1063/1.1775037
-
[35]
(35) Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T.W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512. doi: 10.1126/science.283.5401.512
-
[36]
(36) Chan, I. F.; Mitra, S. S. Phys. Rev. 1968, 172, 924. doi: 10.1103/PhysRev.172.924
-
[37]
(37) Lucovsky, G.; Lind, E.; Davis, E. A. Proceedings of the International Conference on the Physics of II-VI Semiconducting Compounds; Benjamin: New York, 1967; p 1150.
-
[38]
(38) Ichimura, M.; Usami, A.;Wada, T.; Funato, M.; Ichino, K.; Fujita, S.; Fujita, S. Phys. Rev. B 1992, 46, 4273. doi: 10.1103/PhysRevB.46.4273
-
[39]
(39) Lu, H. Y.; Chu, S. Y.; Chang, C. C. J. Crystal Growth 2005, 280, 173. doi: 10.1016/j.jcrysgro.2005.03.032
-
[40]
(40) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049. doi: 10.1021/ja017002j
-
[41]
(41) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025
-
[42]
(42) Hill, R. J. J. Phys. C: Solid State Phys. 1974, 7, 521. doi: 10.1088/0022-3719/7/3/009
-
[43]
(43) Richardson, D.; Hill, R. J. Phys. C: Solid State Phys. 1972, 5, 821. doi: 10.1088/0022-3719/5/8/008
-
[1]
-
-
[1]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[2]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[5]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[6]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[7]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[8]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[9]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[10]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[11]
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
-
[12]
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
-
[13]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[14]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[15]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[16]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[17]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[20]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[1]
Metrics
- PDF Downloads(543)
- Abstract views(616)
- HTML views(3)