Citation: LIN Xu-Feng, XI Yan-Yan, LIN De-Lian. Controllable Synthesis of ZnxCd1-xS Nanowires with Tunable Optical Properties[J]. Acta Physico-Chimica Sinica, ;2014, 30(3): 576-582. doi: 10.3866/PKU.WHXB201312232 shu

Controllable Synthesis of ZnxCd1-xS Nanowires with Tunable Optical Properties

  • Received Date: 17 October 2013
    Available Online: 23 December 2013

    Fund Project: 国家自然科学基金(21306230,21003159) (21306230,21003159)山东省自然科学基金(ZR2012BQ020)资助项目 (ZR2012BQ020)

  • ZnxCd1-xS (0< x <1) nanowires with several different compositions were successfully synthesized on Si wafers by a simple vapor deposition method using Au as a catalyst. The morphology and composition of the nanowires were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results show that the Zn/Cd ratio is controllable by adjusting the relative amount of the starting materials and the deposition temperature. The X- ray diffraction patterns show that the nanowires are single crystals with the wurtzite structure. The morphology character of the nanowires suggests that the growth of the nanowires can be explained by the base-growth mechanism. The optical characteristics of the nanowires were studied by Raman and photoluminescence (PL) spectroscopy. Raman shifts of the longitudinal optical (LO) phonon mode were observed in the ZnxCd1-xS nanowires. The LO peak frequency changed smoothly with changing composition, which approximately shows a one-mode behavior pattern in the ZnxCd1- xS nanowires. In the PL spectra, both band-gap and defect emission were observed. The PL results indicate that the emission frequency originating from the band-gap transition of the ZnxCd1-xS nanowires can be tuned through modulating of the composition. The band-gap of the nanowires can be tuned from 2.41 eV (CdS) to 3.63 eV (ZnS).

  • 加载中
    1. [1]

      (1) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.;Wu, Y. Y.; Kind, H.;Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897. doi: 10.1126/science.1060367

    2. [2]

      (2) Bando, K.; Sawabe, T.; Asaka, K.; Masumoto, Y. J. Lumin. 2004, 108, 385. doi: 10.1016/j.jlumin.2004.01.081

    3. [3]

      (3) Hu, C.; Zeng, X. H.; Cui, J. Y.; Chen, H. T.; Lu, J. F. J. Phys. Chem. C 2013, 117, 20998. doi: 10.1021/jp407272u

    4. [4]

      (4) Duan, X.; Hu, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 24.

    5. [5]

      (5) Kind, Y. H.; Messer, B.; Law, M.; Yang, P. D. Adv. Mater. 2002, 14, 158.

    6. [6]

      (6) Brus, L. E. J. Chem. Phys. 1984, 80, 4403. doi: 10.1063/1.447218

    7. [7]

      (7) Gudiksen, M. S.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 8801. doi: 10.1021/ja002008e

    8. [8]

      (8) Gudiksen, M. S.;Wang, J.; Lieber, C. M. J. Phys. Chem. B 2002, 106, 4036. doi: 10.1021/jp014392n

    9. [9]

      (9) Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Science 2003, 299, 1874. doi: 10.1126/science.1080313

    10. [10]

      (10) Peng, K. Q.;Wang, X.; Li, L.; Hu, Y.; Lee, S. T. Nano Today 2013, 8, 75. doi: 10.1016/j.nantod.2012.12.009

    11. [11]

      (11) Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K. Appl. Phys. Lett. 2005, 87, 033108. doi: 10.1063/1.1997271

    12. [12]

      (12) Zhang, X. T.; Liu, Z.; Liu, Q.; Hark, S. K. J. Phys. Chem. B 2005, 109, 17913. doi: 10.1021/jp0527406

    13. [13]

      (13) Averin, S. V.; Kuznetsov, P. I.; Zhitov, V. A.; Alkeev, N. V.; Kotov, V. M.; Zakharov, L. Y.; Gladysheva, N. B. Tech. Phys. 2012, 82, 49.

    14. [14]

      (14) Hou, J.W.; Song, B.; Zhang, Z. H.;Wang,W. J.;Wu, R.; Sun, Y. F.; Zheng, Y. F.; Ding, P.; Jian, J. K. Acta Physico-Chimica Sinica 2009, 25, 724. [侯军伟, 宋波, 张志华, 王文军, 吴荣, 孙言飞, 郑毓峰, 丁芃, 简基康. 物理化学学报, 2009, 25, 724.] doi: 10.3866/PKU.WHXB20090428

    15. [15]

      (15) Liang, Y. Q.; Zhai, L.; Zhao, X. S.; Xu, D. S. J. Phys. Chem. B 2005, 109, 7120. doi: 10.1021/jp045566e

    16. [16]

      (16) Liu, Y.; Zapien, J. A.; Shan, Y. Y.; Geng, C. Y.; Lee, C. S.; Lee, S. T. Adv. Mater. 2005, 17, 1372.

    17. [17]

      (17) Venu pal, R.; Lin, P. I.; Chen, Y. T. J. Phys. Chem. B 2006, 110, 11691. doi: 10.1021/jp056892c

    18. [18]

      (18) Wu, H.; Yao, Y.; Li,W.; Zhu, L.; Ni, N.; Zhang, X. J. Nanopart. Res. 2011, 13, 2225. doi: 10.1007/s11051-010-9981-7

    19. [19]

      (19) Mahdi, M. A.; Hassan, J. J.; Hassan, Z.; Ng, S. S. Journal of Alloys and Compounds 2012, 541, 227. doi: 10.1016/j.jallcom.2012.05.123

    20. [20]

      (20) Huang, Y.; Duan, X. F.; Lieber, C. M. Small 2005, 1, 142.

    21. [21]

      (21) Mcalpine, C. M.; Friedman, R. S.; Lieber, C. M. Proc. IEEE 2005, 93, 1357. doi: 10.1109/JPROC.2005.850308

    22. [22]

      (22) Sirbuly, D. J.; Law, M.; Yan, H. Q.; Yang, P. D. J. Phys. Chem. B 2005, 109, 15190. doi: 10.1021/jp051813i

    23. [23]

      (23) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455. doi: 10.1038/nmat1387

    24. [24]

      (24) Bailey, R. E.; Nie, S. J. Am. Chem. Soc. 2003, 125, 7100. doi: 10.1021/ja035000o

    25. [25]

      (25) Wei, H.; Ren, X. L.; Han, Z. Y.; Li, T. T.; Su, Y. J.;Wei, L. M.; Cong, F. S.; Zhang, Y. F. Mater. Lett. 2013, 102, 94

    26. [26]

      (26) Xi, Y. Y.; Cheung, T. L. Y.; Ng, D. H. L. Mater. Lett. 2008, 62, 128. doi: 10.1016/j.matlet.2007.04.094

    27. [27]

      (27) Rincon, M. E.; Martinez, M.W.; Miranda-Hernandez, M. Solar Energy Materials & Solar Cells 2003, 77, 25. doi: 10.1016/S0927-0248(02)00242-8

    28. [28]

      (28) Sainova, D. S.; Zen, A.; Nothofer, H. H.; Asawapirom, U.; Scherf, U.; Hagen, R.; Bieringer, T.; Kostromine, S.; Neher, D. Adv. Funct. Mater. 2002, 12, 49. doi: 10.1002/1616-3028(20020101)12:1<49::AID-ADFM49>3.0.CO;2-D

    29. [29]

      (29) Ballentyne, D.W. G.; Ray, B. Physica 1961, 27, 337. doi: 10.1016/0031-8914(61)90106-9

    30. [30]

      (30) Shimaoka, G.; Suzuki, Y. Appl. Surf. Sci. 1997, 113, 528.

    31. [31]

      (31) Kar, S.; Satpati, B.; Satyam, P. V.; Chaudhuri, S. J. Phys. Chem. B 2005, 109, 19134. doi: 10.1021/jp052600w

    32. [32]

      (32) Kim, H.W.; Shim, S. H. Chem. Phys. Lett. 2006, 422, 165. doi: 10.1016/j.cplett.2006.02.062

    33. [33]

      (33) Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.

    34. [34]

      (34) Wu, Z. H.; Sun, M.; Mei, X. Y.; Ruda, H. E. Appl. Phys. Lett. 2004, 85, 657. doi: 10.1063/1.1775037

    35. [35]

      (35) Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T.W.; Cassell, A. M.; Dai, H. Science 1999, 283, 512. doi: 10.1126/science.283.5401.512

    36. [36]

      (36) Chan, I. F.; Mitra, S. S. Phys. Rev. 1968, 172, 924. doi: 10.1103/PhysRev.172.924

    37. [37]

      (37) Lucovsky, G.; Lind, E.; Davis, E. A. Proceedings of the International Conference on the Physics of II-VI Semiconducting Compounds; Benjamin: New York, 1967; p 1150.

    38. [38]

      (38) Ichimura, M.; Usami, A.;Wada, T.; Funato, M.; Ichino, K.; Fujita, S.; Fujita, S. Phys. Rev. B 1992, 46, 4273. doi: 10.1103/PhysRevB.46.4273

    39. [39]

      (39) Lu, H. Y.; Chu, S. Y.; Chang, C. C. J. Crystal Growth 2005, 280, 173. doi: 10.1016/j.jcrysgro.2005.03.032

    40. [40]

      (40) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049. doi: 10.1021/ja017002j

    41. [41]

      (41) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. doi: 10.1021/ja00072a025

    42. [42]

      (42) Hill, R. J. J. Phys. C: Solid State Phys. 1974, 7, 521. doi: 10.1088/0022-3719/7/3/009

    43. [43]

      (43) Richardson, D.; Hill, R. J. Phys. C: Solid State Phys. 1972, 5, 821. doi: 10.1088/0022-3719/5/8/008


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    8. [8]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    16. [16]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    17. [17]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    18. [18]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

Metrics
  • PDF Downloads(543)
  • Abstract views(661)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return