Citation: NG Li-Zhen, XU Zhi-Guang, XU Xuan, HE Jing, WANG Qi, LIU Hai-Yang. Axial Coordination Behavior of Corrole Mn and MnVO Complexes with N-Based Ligands[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 265-272. doi: 10.3866/PKU.WHXB201312181 shu

Axial Coordination Behavior of Corrole Mn and MnVO Complexes with N-Based Ligands

  • Received Date: 8 October 2013
    Available Online: 18 December 2013

    Fund Project: 国家自然科学基金(21171057,21371059) (21171057,21371059)广东省自然科学基金(S2012010008763)资助项目 (S2012010008763)

  • The axial coordination behavior of the 5,10,15-tris(pentafluorophenyl)corrole manganese [(TPFC)Mn] and 5,10,15-tris(pentafluorophenyl)corrole manganese(V)-oxo [(TPFC)MnVO] complexes with N-based ligands, such as imidazole, methylimidazole, isopropylimidazole, and pyridine, were investigated using density functional theory (DFT) at BP86 level. The results show these N-based ligands can form a stable axial coordination complex with (TPFC)Mn in its quintet state. The coordination binding strength followed the order imidazole>4-methylimidazole>pyridine, which is in agreement with experimental results. The binding energy and the large distance between the Mn and N atom of the ligands indicates that (TPFC)MnVO cannot form an effective coordination bond in its singlet or triple state. Natural bond orbital (NBO) analysis indicates that the 3d orbitals of the Mn atom in (TPFC)MnVO are fully occupied, and there are no empty 3d orbitals to accept lone pair electrons from the ligands. However, there is a weak coordination interaction between the ligands and (TPFC)MnVO in its triplet state.

  • 加载中
    1. [1]

      (1) Gross, Z. J. Biol. Inorg. Chem. 2001, 6, 733.

    2. [2]

      (2) Gross, Z.; Gray, H. B. Comments Inorg. Chem. 2006, 27, 61.doi: 10.1080/02603590600666256

    3. [3]

      (3) Gross, Z.; Galili, N.; Saltsman, I. Angew. Chem. Int. Edit. 1999,38, 1427.

    4. [4]

      (4) Gryko, D. T.; Jadach, K. J. Org. Chem. 2001, 66, 4267.

    5. [5]

      (5) Aviv, I.; Gross, Z. Chem. Commun. 2007, 1987.

    6. [6]

      (6) Aviv-Harel, I.; Gross, Z. Coord. Chem. Rev. 2011, 255, 717. doi: 10.1016/j.ccr.2010.09.013

    7. [7]

      (7) Liu, H. Y.; Mahmood, M. H. R.; Qiu, S. X. S.; Chang, C. K.Coord. Chem. Rev. 2013, 257, 1306. doi: 10.1016/j.ccr.2012.12.017

    8. [8]

      (8) Gross, Z.; Simkhovich, L.; Galili, N. Chem. Commun. 1999,599.

    9. [9]

      (9) Gross, Z.; lubkov, G.; Simkhovich, L. Angew. Chem. Int. Edit. 2000, 39, 4045.

    10. [10]

      (10) Bose, S.; Pariyar, A.; Biswas, A. N.; Das, P.; Bandyopadhyay, P.Catal. Commun. 2011, 12, 1193. doi: 10.1016/j.catcom.2011.04.026

    11. [11]

      (11) Kumar, A.; ldberg, I.; Botoshansky, M.; Buchman, Y.; Gross,Z. J. Am. Chem. Soc. 2010, 132, 15233.

    12. [12]

      (12) Liu, H. Y.; Zhou, H.; Liu, L. Y.; Ying, X.; Jiang, H. F.; Chang,C. K. Chem. Lett. 2007, 36, 274.

    13. [13]

      (13) Collman, J. P.; Zeng, L.; Decreau, R. A. Chem. Commun. 2003,2974.

    14. [14]

      (14) Liu, H. Y.; Yam, F.; Xie, Y. T.; Li, X. Y.; Chang, C. K. J. Am. Chem. Soc. 2009, 131, 12890. doi: 10.1021/ja905153r

    15. [15]

      (15) Liu, H. Y.; Lai, T. S.; Yeung, L. L.; Chang, C. K. Org. lett. 2003,5, 617.

    16. [16]

      (16) He, J.; Xu, Z. G.; Zeng, Y. X.; Xu, X.; Yu, L.;Wang, Q.; Liu, H.Y. Acta Phys. -Chim. Sin. 2012, 28, 1658. [何婧, 徐志广, 曾允秀, 许旋, 喻兰, 王琦, 刘海洋. 物理化学学报, 2012,28, 1658.] doi: 10.3866/PKU.WHXB201205101

    17. [17]

      (17) Lai, T. S.; Lee, S. K. S.; Yeung, L. L.; Liu, H. Y.;Williams, I.D.; Chang, C. K. Chem. Commun. 2003, 620.

    18. [18]

      (18) Liu, J. J.;Wang, H. H.; Ying, X.;Wang, X. L.; Zhang, H.; Liu,H. Y. Chem. J. Chin. Univ. 2011, 32, 218. [刘晶晶, 汪华华,应晓, 王湘利, 章浩, 刘海洋. 高等学校化学学报, 2011,32, 218.]

    19. [19]

      (19) Ou, Z.; Erben C.; Autret, M.;.Will, S.; Rosen, D.; Lex, J.;Vogel, E.; Kadish, K. M. J. Porphyr. Phthalocyanines 2005, 9,398.

    20. [20]

      (20) Liu, H. Y.; Li, L.; Ying, X.;Wang, X. L.; Xu, Z. G.; Liao, S. J.;Chang, C. K. Acta Phys. -Chim. Sin. 2008, 24, 1602. [刘海洋,李立, 应晓, 王湘利, 徐志广, 廖世军, 张启光. 物理化学学报, 2008, 24, 1602.] doi: 10.3866/PKU.WHXB20080913

    21. [21]

      (21) Zhu, C.; Liang, J.;Wang, B.; Zhu, J.; Cao, Z. Phys. Chem. Chem. Phys. 2012, 14, 12800. doi: 10.1039/c2cp41647f

    22. [22]

      (22) Latifi, R.; Tahsini, L.; Karamzadeh, B.; Safari, N.; Nam,W.; deVisser, S. P. Arch. Biochem. Biophys. 2011, 507, 4.

    23. [23]

      (23) Balcells, D.; Raynaud, C.; Crabtree R. H.; Eisenstein, O. Chem. Commun. 2008, 744.

    24. [24]

      (24) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88,899.

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    26. [26]

      (26) Wiberg, K. B. Tetrahedron 1968, 24, 1083.

    27. [27]

      (27) Prokop, K. A.; Neu, H. M.; de Visser, S. P.; ldberg, D. P.J. Am. Chem. Soc. 2011, 133, 15874.

    28. [28]

      (28) Turner, P.; Gunter, M. J.; Skelton, B.W.; White, A. H.;Hambley, T.W. J. Chem. Res. 1996, 18, 220.


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    12. [12]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    13. [13]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

Metrics
  • PDF Downloads(550)
  • Abstract views(822)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return