Citation: ZHONG Bei-Jing, YAO Tong, WEN Fei. Skeletal and Reduced Mechanisms of n-Decane Simplified with Eigenvalue Analysis[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 210-216. doi: 10.3866/PKU.WHXB201312103
-
Based on the eigenvalue analysis reduction method, a detailed mechanism of n-decane with 118 species and 527 reactions was simplified. A skeletal mechanism with 70 species and 327 reactions was thus obtained. The computational singular perturbation (CSP) reduction method, which is based on eigenvalue analysis, was subsequently used to simplify the skeletal mechanism, and a reduced mechanism with 38 species and 34 reaction steps was developed. Comparison between the reduced mechanism, skeletal mechanism, and detailed mechanism showed that the reduced and skeletal mechanisms could reproduce the characteristics of the detailed mechanism and give the combustion characteristics of n-decane. The development of these models represents a significant step toward coupling of chemical reaction kinetics with computational fluid dynamics, and is a od basis for improving computational efficiency.
-
-
[1]
(1) Dagaut, P.; El Bakali, A.; Ristori, A. Fuel 2006, 85 (7-8), 944.
-
[2]
(2) Seiser, R.; Niemann, U.; Seshadri, K. Proc. Combust. Inst. 2011,33 (1), 1045. doi: 10.1016/j.proci.2010.06.078
-
[3]
(3) Mont mery, C. J. Optimized Reduced Chemical KineticMechanisms for Ethylene and JP-8 Combustion. 45th AIAAAerospace Sciences Meeting and Exhibit. Reno, Nevada,America, January 8-11, 2007.
-
[4]
(4) Lu, T.; Law, C. K. Combust. Flame 2008, 154 (1-2), 153.
-
[5]
(5) Lu, T.; Law, C. K. Prog. Energ. Combust. 2009, 35 (2),192. doi: 10.1016/j.pecs.2008.10.002
-
[6]
(6) Vajda, S.; Valko, P.; Turányi, T. Int. J. Chem. Kinet. 1985, 17 (1), 55.
-
[7]
(7) Turányi, T. J. Math. Chem. 1990, 5 (3), 203. doi: 10.1007/BF01166355
-
[8]
(8) Rabitz, H.; Kramer, M.; Dacol, D. Annu. Rev. Phys. Chem.1983, 34 (1), 419. doi: 10.1146/annurev.pc.34.100183.002223
-
[9]
(9) Lu, T.; Law, C. K. Proc. Combust. Inst. 2005, 30 (1), 1333. doi: 10.1016/j.proci.2004.08.145
-
[10]
(10) Lu, T.; Law, C. K. Combust. Flame 2006, 146 (3), 472. doi: 10.1016/j.combustflame.2006.04.017
-
[11]
(11) Wen, F.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28, 1306.[文斐,钟北京.物理化学学报, 2012, 28, 1306.] doi: 10.3866/PKU.WHXB201204012
-
[12]
(12) ussis, D. A.; Lam, S. H. Symp. Int. Combust. 1992, 24 (1),113. doi: 10.1016/S0082-0784(06)80018-4
-
[13]
(13) Lam, S. H. Combust. Sci. Tech. 1993, 89 (5-6), 375. doi: 10.1080/00102209308924120
-
[14]
(14) Lam, S. H.; Coussis, D. A. Symp. Int. Combust. 1989, 22 (1),931. doi: 10.1016/S0082-0784(89)80102-X
-
[15]
(15) Maas, U.; Pope, S. B. Combust. Flame 1992, 88 (3-4), 239.
-
[16]
(16) Lu, T.; Law, C. K. Combust. Flame 2006, 144 (1-2), 24.
-
[17]
(17) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154 (1-2), 67.
-
[18]
(18) Sun, W.; Chen, Z.; u, X.; Ju, Y. Combust. Flame 2010, 157 (7), 1298. doi: 10.1016/j.combustflame.2010.03.006
-
[19]
(19) Westbrook, C. K.; Pitz, W. J.; Herbinet, O.; Curran, H. J.; Silke,E. J. Combust. Flame 2009, 156 (1), 181. doi: 10.1016/j.combustflame.2008.07.014
-
[20]
(20) Douté, C.; Delfau, J. L.; Vovelle, C. Combust. Sci. Tech. 1997,130 (1-6), 269. doi: 10.1080/00102209708935746
-
[21]
(21) Wang, Q. D.; Fang, Y. M.; Wang, F.; Li, X. Y. Combust. Flame2012, 159 (1), 91. doi: 10.1016/j.combustflame.2011.05.019
-
[22]
(22) Liu, J. W.; Xiong, S. W.; Ma, X. S. J. Prop. Tech. 2011, 32 (4),525. [刘建文, 熊生伟,马雪松. 推进技术, 2011, 32 (4), 525.]
-
[23]
(23) Chang, Y.; Jia, M.; Liu, Y.; Li, Y.; Xie, M. Combust. Flame2013, 160, 1315. doi: 10.1016/j.combustflame.2013.02.017
-
[24]
(24) Zhukov, V. P.; Sechenov, V. A.; Starikovskii, A. Y. Combust. Flame 2008, 153 (1-2), 130.
-
[25]
(25) Bikas, G.; Peters, N. Combust. Flame 2001, 126 (1-2), 1456.
-
[26]
(26) Buda, F.; Bounaceur, R.; Warth, V.; Glaude, P. A. Combust. Flame 2005, 142 (1-2), 170. doi: 10.1016/j.combustflame.2005.03.005
-
[27]
(27) Lindstedt, R. P.; Maurice, L. Q. J. Propul. Power. 2000, 16 (2),187. doi: 10.2514/2.5582
-
[28]
(28) Zhao, Z. W.; Li, J.; Kazakov, A.; Dryer, F. L.; Zeppieri, S. P.Combust. Sci. Tech. 2005, 177 (1), 89.
-
[29]
(29) Zhukov, V. P.; Tsyganov, D. L.; Sechenov, V. A.; Starikovskii, A.Y. n-Decane Ignition at High Pressures. In Proceedings of theEuropean Combustion Meeting, European Combustion Meeting2005, Louvain-la-Neuve, Belgium, April 3-6, 2005; pp 194-196.
-
[30]
(30) Pfahl, U.; Fieweger, K.; Adomeit, G. Proc. Combust. Inst. 1996,26, 781.
-
[31]
(31) Wen, F.; Yao, T.; Zhong, B. J. J. Eng. Thermo. 2012, 33 (4), 699.[文斐,姚通,钟北京. 工程热物理学报, 2012, 33 (4), 699.]
-
[32]
(32) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKINRelease 4.1; Reaction Design: San Die , CA, 2006.
-
[33]
(33) Kumar, K.; Sung, C. J. Combust. Flame 2007, 151 (1-2), 209.
-
[34]
(34) Ji, C.; Dames, E.; Wang, Y. L.; Wang, H.; E lfopoulos, F. N.Combust. Flame 2010, 157, 277. doi: 10.1016/j.combustflame.2009.06.011
-
[35]
(35) Kim, H. H.; Won, S. H.; Santner, J.; Chen, Z.; Ju, Y. Proc. Combust. Inst. 2013, 34, 936.
-
[1]
-
-
[1]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[2]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[3]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[4]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[5]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[6]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[7]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[8]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[9]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[10]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[11]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[12]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[13]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[14]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[15]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[16]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[17]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[18]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[19]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[20]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[1]
Metrics
- PDF Downloads(604)
- Abstract views(875)
- HTML views(29)