Citation: SHEN Qi, FAN Ying-Ju, YIN Long, SUN Zhong-Xi. Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 359-364. doi: 10.3866/PKU.WHXB201312041 shu

Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces

  • Received Date: 18 July 2013
    Available Online: 4 December 2013

    Fund Project: 国家自然科学基金(51274104,50874052) (51274104,50874052)国家重点基础研究发展规划项目(973)(2011CB933700)资助 (973)(2011CB933700)

  • In this study, a continuous online in situ attenuated total reflection Fourier- transform infrared (ATR-FTIR) spectroscopic technique was used to monitor the behavior of butyl xanthate adsorbed on CuO nanoparticle surfaces. A red-shift phenomenon, i.e., the absorption peak at 1200 cm-1 shifted to 1193 cm-1, was observed in the FTIR spectra. However, there was no obvious change in the peak intensity after desorption using ultrapure deionized water, indicating that butyl xanthate was chemisorbed on the CuO surface. We determined the order of the spectral intensity changes in the adsorption process using twodimensional (2D) IR spectroscopy. The 2D asynchronous spectra showed that the spectral intensity of the characteristic peak at 1265 cm-1 changed first. This may be attributable to the combined peaks of dixanthogen and xanthate molecular aggregates at the surfaces. The adsorption kinetics was studied by monitoring the intensity changes of the xanthate characteristic peak at 1200 cm-1. The adsorption kinetic data showed that the maximum chemisorption capacity of CuO for butyl xanthate was 529 mg·g-1, and the adsorption kinetics can be described by a pseudo-second-order reaction model.

  • 
    1. [1]

      (1) Sawant, P.; Kovalev, E.; Klug, J. T.; Efrima, S. Langmuir 2001,17, 2913. doi: 10.1021/la0014961

    2. [2]

      (2) Li, Z.; Yoon, R. Minerals Engineering 2012, 36-38, 126.

    3. [3]

      (3) Feng, B.; Feng, Q. M.; Lu, Y. P.; Lv, P. C. Minerals Engineering2012, 39, 48. doi: 10.1016/j.mineng.2012.05.022

    4. [4]

      (4) Hao, F.; Davey, K. J.; Bruckard,W. J.;Woodcock, J. T. Int . J .Miner. Process. 2008, 89, 71. doi: 10.1016/j.minpro.2008.07.004

    5. [5]

      (5) Souto, R. M.; Laz, M. M.; nzalez, S. J. Phys. Chem. B 1997,101, 508. doi: 10.1021/jp962144z

    6. [6]

      (6) Liu, X. Q.; Li, Z.; Zhang, Q.; Li, F.; Kong, T. Materials Letters2012, 72, 49. doi: 10.1016/j.matlet.2011.12.077

    7. [7]

      (7) Ghadimkhani, G.; Tacconi, N.; Chanmanee,W.; Janakyab, C.;Rajeshwar, K. Chem. Commun. 2013, 49, 1297. doi: 10.1039/c2cc38068d

    8. [8]

      (8) Cornel, J.; Lindenberg, C.; Mazzotti, M. Ind. Eng. Chem. Res.2008, 47, 4870. doi: 10.1021/ie800236v

    9. [9]

      (9) McQuillan, A. J. Adv. Mater. 2001, 13, 1034. doi: 10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7

    10. [10]

      (10) Beaussart, A.; Petrone, P.; Mierczynska-Vasilev, A.; McQuillan,A. J.; Beattie, D. A. Langmuir 2012, 28, 4233. doi: 10.1021/la204652f

    11. [11]

      (11) Michelmore, A.; ng,W.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 2985. doi: 10.1039/b001213k

    12. [12]

      (12) Kirwan, L. J.; Fawell, P. D.; Bronswijk,W. Langmuir 2003, 19,5802. doi: 10.1021/la027012d

    13. [13]

      (13) Brimaud, S.; Jusys, Z.; Behm, R. J. Electrocatalysis 2011, 2,69. doi: 10.1007/s12678-011-0040-7

    14. [14]

      (14) Ge, D. L.; Fan, Y. J.; Yin, L.; Sun, Z. X. Acta Phys. -Chim. Sin.2013, 29, 371. [葛东来, 范迎菊, 尹龙, 孙中溪. 物理化学学报, 2013, 29, 371.] doi: 10.3866/PKU.WHXB201211146

    15. [15]

      (15) Noda, I.; Dowrey, A. E.; Marcott, C. Applied Spectroscopy1993, 47, 1317. doi: 10.1366/0003702934067513

    16. [16]

      (16) Noda, I. Bull. Am. Phys. Soc. 1986, 31, 520.

    17. [17]

      (17) Noda, I. Appl. Spectroscopy 1990, 44, 550. doi: 10.1366/0003702904087398

    18. [18]

      (18) Shen, Y.;Wu, P. Y. J. Phys. Chem. B 2003, 107, 4224. doi: 10.1021/jp0269975

    19. [19]

      (19) Beattie, D. A.; Chapelet, J. K.; Grafe, M.; Skinner,W. M.;Smith, E. Environ. Sci. Technol. 2008, 42, 9191. doi: 10.1021/es801767b

    20. [20]

      (20) Chandra, A. P.; Puskar, L.; Simpson, D. J.; Gerson, A. R. Int. J. Miner. Process. 2012, 114-117, 16.

    21. [21]

      (21) Leppinen, J. O.; Basilio, C. I.; Yoon, R. H. Int. J. Miner. Process. 1989, 26, 259. doi: 10.1016/0301-7516(89)90032-X

    22. [22]

      (22) Popov, S. R.; Vocinic, D. R. Int. J. Miner. Process. 1990, 30,229.

    23. [23]

      (23) Hellstrom, P.; Holmgren, A.; Öberg, S. J. Phys. Chem. C 2007,111, 16920. doi: 10.1021/jp074254j

    24. [24]

      (24) Hao, F. P.; Ewen Silvester, E.; David, G. Anal. Chem. 2000, 72,4836. doi: 10.1021/ac991277o

    25. [25]

      (25) Larsson, M. L.; Holmgren, A.; Forsling,W. Langmuir 2000, 16,8129. doi: 10.1021/la000454+

    26. [26]

      (26) Fredriksson, A.; Holmgren, A. Colloid Surface A 2007, 302,96. doi: 10.1016/j.colsurfa.2007.02.005

    27. [27]

      (27) Yang, Y. L.; Yan,W.; Jing, C. Y. Langmuir 2012, 28, 14588. doi: 10.1021/la303413j


    1. [1]

      (1) Sawant, P.; Kovalev, E.; Klug, J. T.; Efrima, S. Langmuir 2001,17, 2913. doi: 10.1021/la0014961

    2. [2]

      (2) Li, Z.; Yoon, R. Minerals Engineering 2012, 36-38, 126.

    3. [3]

      (3) Feng, B.; Feng, Q. M.; Lu, Y. P.; Lv, P. C. Minerals Engineering2012, 39, 48. doi: 10.1016/j.mineng.2012.05.022

    4. [4]

      (4) Hao, F.; Davey, K. J.; Bruckard,W. J.;Woodcock, J. T. Int . J .Miner. Process. 2008, 89, 71. doi: 10.1016/j.minpro.2008.07.004

    5. [5]

      (5) Souto, R. M.; Laz, M. M.; nzalez, S. J. Phys. Chem. B 1997,101, 508. doi: 10.1021/jp962144z

    6. [6]

      (6) Liu, X. Q.; Li, Z.; Zhang, Q.; Li, F.; Kong, T. Materials Letters2012, 72, 49. doi: 10.1016/j.matlet.2011.12.077

    7. [7]

      (7) Ghadimkhani, G.; Tacconi, N.; Chanmanee,W.; Janakyab, C.;Rajeshwar, K. Chem. Commun. 2013, 49, 1297. doi: 10.1039/c2cc38068d

    8. [8]

      (8) Cornel, J.; Lindenberg, C.; Mazzotti, M. Ind. Eng. Chem. Res.2008, 47, 4870. doi: 10.1021/ie800236v

    9. [9]

      (9) McQuillan, A. J. Adv. Mater. 2001, 13, 1034. doi: 10.1002/1521-4095(200107)13:12/13<1034::AID-ADMA1034>3.0.CO;2-7

    10. [10]

      (10) Beaussart, A.; Petrone, P.; Mierczynska-Vasilev, A.; McQuillan,A. J.; Beattie, D. A. Langmuir 2012, 28, 4233. doi: 10.1021/la204652f

    11. [11]

      (11) Michelmore, A.; ng,W.; Jenkins, P.; Ralston, J. Phys. Chem. Chem. Phys. 2000, 2, 2985. doi: 10.1039/b001213k

    12. [12]

      (12) Kirwan, L. J.; Fawell, P. D.; Bronswijk,W. Langmuir 2003, 19,5802. doi: 10.1021/la027012d

    13. [13]

      (13) Brimaud, S.; Jusys, Z.; Behm, R. J. Electrocatalysis 2011, 2,69. doi: 10.1007/s12678-011-0040-7

    14. [14]

      (14) Ge, D. L.; Fan, Y. J.; Yin, L.; Sun, Z. X. Acta Phys. -Chim. Sin.2013, 29, 371. [葛东来, 范迎菊, 尹龙, 孙中溪. 物理化学学报, 2013, 29, 371.] doi: 10.3866/PKU.WHXB201211146

    15. [15]

      (15) Noda, I.; Dowrey, A. E.; Marcott, C. Applied Spectroscopy1993, 47, 1317. doi: 10.1366/0003702934067513

    16. [16]

      (16) Noda, I. Bull. Am. Phys. Soc. 1986, 31, 520.

    17. [17]

      (17) Noda, I. Appl. Spectroscopy 1990, 44, 550. doi: 10.1366/0003702904087398

    18. [18]

      (18) Shen, Y.;Wu, P. Y. J. Phys. Chem. B 2003, 107, 4224. doi: 10.1021/jp0269975

    19. [19]

      (19) Beattie, D. A.; Chapelet, J. K.; Grafe, M.; Skinner,W. M.;Smith, E. Environ. Sci. Technol. 2008, 42, 9191. doi: 10.1021/es801767b

    20. [20]

      (20) Chandra, A. P.; Puskar, L.; Simpson, D. J.; Gerson, A. R. Int. J. Miner. Process. 2012, 114-117, 16.

    21. [21]

      (21) Leppinen, J. O.; Basilio, C. I.; Yoon, R. H. Int. J. Miner. Process. 1989, 26, 259. doi: 10.1016/0301-7516(89)90032-X

    22. [22]

      (22) Popov, S. R.; Vocinic, D. R. Int. J. Miner. Process. 1990, 30,229.

    23. [23]

      (23) Hellstrom, P.; Holmgren, A.; Öberg, S. J. Phys. Chem. C 2007,111, 16920. doi: 10.1021/jp074254j

    24. [24]

      (24) Hao, F. P.; Ewen Silvester, E.; David, G. Anal. Chem. 2000, 72,4836. doi: 10.1021/ac991277o

    25. [25]

      (25) Larsson, M. L.; Holmgren, A.; Forsling,W. Langmuir 2000, 16,8129. doi: 10.1021/la000454+

    26. [26]

      (26) Fredriksson, A.; Holmgren, A. Colloid Surface A 2007, 302,96. doi: 10.1016/j.colsurfa.2007.02.005

    27. [27]

      (27) Yang, Y. L.; Yan,W.; Jing, C. Y. Langmuir 2012, 28, 14588. doi: 10.1021/la303413j


  • 加载中
    1. [1]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(535)
  • Abstract views(1200)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return