Citation: LIN Xing-Yi, MA Jun-Tao, CHEN Chong-Qi, ZHAN Ying-Ying, ZHENG Qi. Influence of Copper Species on Performance of Cu/Fe2O3 Catalysts for Water Gas Shift Reaction[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 157-163. doi: 10.3866/PKU.WHXB201311271
-
A series of Cu/Fe2O3 catalysts with different Cu loadings were prepared using a co-precipitation method, and the relationship between their structures and catalytic activities for the water gas shift (WGS) reaction was carefully examined. It was found that the as-prepared Cu/Fe2O3 catalysts exhibit excellent WGS performances, in particular, the one containing 20% (w) CuO (CF-20) shows the best catalytic activity, with CO conversion of 97.2% at 250 ℃. Its catalytic stability is also outstanding during the temperature range of 250-400 ℃. X-ray diffraction (XRD), N2 physisorption, and H2 temperature program reduction (H2-TPR) techniques were used to characterize the crystal phases, textures, and reduction properties of the Cu/Fe2O3 catalysts. The results show that the generation of CuFe2O4, which has a spinel structure in stabilizing Cu microcrystals and is easier to be reduced at low temperature, resulting in enhancing their reduction properties and facilitating electrons transfer between Cu and Fe2O3, thus greatly improving the catalytic performance. Furthermore, (NH4)2CO3 solution treatment of the as-prepared catalysts was performed to study the effect of bulk CuO existed in the Cu/Fe2O3 catalysts. The result suggests that the bulk CuO is favor for H atom transfer between Cu and Fe2O3, thus promoting the reduction of CuFe2O4, finally improving the catalytic performance.
-
Keywords:
-
Water gas shift
, - Cu/Fe2O3 catalyst,
- Copper loading,
- CuFe2O4
-
-
-
[1]
(1) Hoffmann, P. Tomorrow 's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet; MIT Press: Cambridge,Massachusetts, 2001.
-
[2]
(2) Spivey, J. J. Catal. Today 2005, 100, 171. doi: 10.1016/j.cattod.2004.12.011
-
[3]
(3) Tonkovich, A. Y.; Zilka, J. L.; LaMont, M. J.;Wang, Y.;Wegeng, R. S. Chem. Eng. Sci. 1999, 54, 2947. doi: 10.1016/S0009-2509(98)00346-7
-
[4]
(4) Suh, D. J.; Kwak, C.; Kim, J. H.; Kwon, S. M.; Park, T. J.J. Power Sources 2005, 142, 70. doi: 10.1016/j.jpowsour.2004.09.012
-
[5]
(5) Andreeva, D.; Idakiev, V.; Tabakova, T.; Andreev, A. J. Catal.1996, 158, 354. doi: 10.1006/jcat.1996.0035
-
[6]
(6) Li, Y.; Fu, Q.; Flytzani-Stephanopoulos, M. Appl. Catal. B: Environ. 2000, 27, 179. doi: 10.1016/S0926-3373(00)00147-8
-
[7]
(7) Zhai, Y.; Pierre, D.; Si, R.; Deng,W.; Ferrin, P.; Nilekar, A. U.;Peng, G.; Herron, J. A.; Bell, D. C.; Saltsburg, H.; Mavrikakis,M.; Flytzani-Stephanopoulos, M. Science 2010, 329, 1633. doi: 10.1126/science.1192449
-
[8]
(8) Zhang, Y.; Zhan, Y.; Chen, C.; Cao, Y.; Lin, X.; Zheng, Q. Int. J. Hydrog. Energy 2012, 37, 12292. doi: 10.1016/j.ijhydene.2012.06.025
-
[9]
(9) She, Y.; Zheng, Q.; Li, L.; Zhan, Y.; Chen, C.; Zheng, Y.; Lin, X.Int. J. Hydrog. Energy 2009, 34, 8929. doi: 10.1016/j.ijhydene.2009.08.062
-
[10]
(10) Sagata, K.; Imazu, N.; Yahiro, H. Catal. Today 2013, 201,145. doi: 10.1016/j.cattod.2012.03.064
-
[11]
(11) Kubacka, A.; Si, R.; Michorczyk, P.; Martínez-Arias, A.; Xu,W.; Hanson, J. C.; Rodriguez, J. A.; Fernández-García, M. Appl. Catal. B: Environ. 2013, 132-133, 423.
-
[12]
(12) Sagata, K.; Yahiro, H. B. Chem. Soc. Jpn. 2012, 85, 511. doi: 10.1246/bcsj.20110283
-
[13]
(13) Rasmussen, D. B.; Janssens, T. V.W.; Temel, B.; Bligaard, T.;Hinnemann, B.; Helveg, S.; Sehested, J. J. Catal. 2012, 293,205. doi: 10.1016/j.jcat.2012.07.001
-
[14]
(14) Li, L.; Song, L.;Wang, H.; Chen, C.; She, Y.; Zhan, Y.; Lin, X.;Zheng, Q. Int. J. Hydrog. Energy 2011, 36, 8839. doi: 10.1016/j.ijhydene.2011.04.137
-
[15]
(15) Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.;Martínez-Arias, A.; Fernández-García, M. J. Phys. Chem. B2005, 110, 428.
-
[16]
(16) Wen,W.; Jing, L.; White, M.; Marinkovic, N.; Hanson, J.;Rodriguez, J. Catal. Lett. 2007, 113, 1. doi: 10.1007/s10562-006-9003-7
-
[17]
(17) Faungnawakij, K.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.;Eguchi, K. Appl. Catal. B: Environ. 2009, 92, 341. doi: 10.1016/j.apcatb.2009.08.013
-
[18]
(18) Estrella, M.; Barrio, L.; Zhou, G.;Wang, X.;Wang, Q.;Wen,W.; Hanson, J. C.; Frenkel, A. I.; Rodriguez, J. A. J. Phys. Chem. C 2009, 113, 14411. doi: 10.1021/jp903818q
-
[19]
(19) Yang, X.;Wei, Y.; Su, Y.; Zhou, L. Fuel Process. Technol. 2010,91, 1168. doi: 10.1016/j.fuproc.2010.03.032
-
[20]
(20) Andreev, A.; Idakiev, V.; Mihajlova, D.; Shopov, D. Applied Catalysis 1986, 22, 385. doi: 10.1016/S0166-9834(00)82645-7
-
[21]
(21) Idakiev, V.; Mihajlova, D.; Kunev, B.; Andreev, A. React. Kinet. Catal. L. 1987, 33, 119. doi: 10.1007/BF02066710
-
[22]
(22) Khan, A.; Chen, P.; Boolchand, P.; Smirniotis, P. G. J. Catal.2008, 253, 91. doi: 10.1016/j.jcat.2007.10.018
-
[23]
(23) Reddy, G. K.; Smirniotis, P. G. Catal. Lett. 2011, 141, 27. doi: 10.1007/s10562-010-0465-2
-
[24]
(24) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H. Acta Phys. -Chim. Sin. 2008, 24 (5), 833. [林明桂, 房克功, 李德宝, 孙予罕. 物理化学学报, 2008, 24 (5), 833.] doi: 10.3866/PKU.WHXB20080517
-
[25]
(25) Khan, A.; Smirniotis, P. G. J. Mol. Catal. A: Chem. 2008, 280,43. doi: 10.1016/j.molcata.2007.10.022
-
[26]
(26) Yang, S. C.; Su,W. N.; Lin, S. D.; Rick, J.; Cheng, J. H.; Liu, J.Y.; Pan, C. J.; Liu, D. G.; Lee, J. F.; Chan, T. S.; Sheu, H. S.;Hwang, B. J. Appl. Catal. B: Environ. 2011, 106, 650. doi: 10.1016/j.apcatb.2011.06.030
-
[27]
(27) Kameoka, S.; Tanabe, T.; Tsai, A. P. Appl. Catal. A: Gen. 2010,375, 163. doi: 10.1016/j.apcata.2009.12.035
-
[28]
(28) Faungnawakij, K.; Kikuchi, R.; Fukunaga, T.; Eguchi, K. Catal. Today 2008, 138, 157. doi: 10.1016/j.cattod.2008.05.004
-
[29]
(29) Strohmeier, B. R.; Levden, D. E.; Field, R. S.; Hercules, D. M.J. Catal. 1985, 94, 514. doi: 10.1016/0021-9517(85)90216-7
-
[30]
(30) Severino, F.; Brito, J. L.; Laine, J.; Fierro, J. L. G.; Agudo, A. L.J. Catal. 1998, 177, 82. doi: 10.1006/jcat.1998.2094
-
[1]
-
-
[1]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[4]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[5]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[6]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[7]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[8]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[9]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[10]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[11]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[12]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[17]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[18]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[19]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[20]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[1]
Metrics
- PDF Downloads(722)
- Abstract views(975)
- HTML views(95)