Citation: CHEN Xi-Ming, JIA Chun-Yang, WAN Zhong-Quan, YAO Xiao-Jun. Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 273-280. doi: 10.3866/PKU.WHXB201311262 shu

Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells

  • Received Date: 26 September 2013
    Available Online: 26 November 2013

    Fund Project: 国家自然科学基金(21272033),电子薄膜与集成器件国家重点实验室创新基金(CXJJ201104)以及北京分子科学国家实验室(筹)开放基金资助项目 (21272033),电子薄膜与集成器件国家重点实验室创新基金(CXJJ201104)以及北京分子科学国家实验室(筹)

  • To investigate the effect of a tetrathiafulvalene (TTF) unit on the photovoltaic properties of the corresponding dye sensitizer, a TTF-carbazole-based sensitizer, Dye 2, was designed; it was based on the framework of Dye 1. The geometries, electronic structures, and optical properties of Dye 1 and Dye 2 before and after binding to (TiO2)9 clusters were investigated using density functional theory (DFT) and timedependent DFT. The surface morphologies of the dyes on TiO2 (101) surfaces were simulated by periodic DFT calculations using the DMol3 program. The calculated results showed that the introduction of TTF units into dyes could help to inhibit dye aggregation on the TiO2 surface; this is conducive to intramolecular charge- transfer transitions and significantly improves the light-harvesting ability. The calculated results demonstrate that the TTF unit is a very promising electron donor for improving the photovoltaic properties of organic dye sensitizers.

  • 加载中
    1. [1]

      (1) O′Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    2. [2]

      (2) Lee, H. J.; Leventis, H. C.; Haque, S. A.; Torres, T.; Grätzel, M.;Nazeeruddin, M. K. J. Power Sources 2011, 196, 596. doi: 10.1016/j.jpowsour.2010.06.096

    3. [3]

      (3) Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E.Chem. Soc. Rev. 2011, 40, 1635. doi: 10.1039/b920664g

    4. [4]

      (4) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688

    5. [5]

      (5) Wang, X. F.; Tamiaki, H. Energy Environ. Sci. 2010, 3, 94. doi: 10.1039/b918464c

    6. [6]

      (6) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H.Chem. Rev. 2010, 110, 6595. doi: 10.1021/cr900356p

    7. [7]

      (7) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 121, 2510. doi: 10.1002/anie.200804709

    8. [8]

      (8) Liang, M.; Lu, M.;Wang, Q. L.; Chen,W. Y.; Han, H. Y.; Sun,Z.; Xue, S. J. Power Sources 2011, 196, 1657. doi: 10.1016/j.jpowsour.2010.08.055

    9. [9]

      (9) Kandavelu, V.; Huang, H. S.; Jian, J. L.; Yang, T. C. K.;Wang,K. L.; Huang, S. T. Sol. Energy 2009, 83, 574. doi: 10.1016/j.solener.2008.10.002

    10. [10]

      (10) Matsui, M.; Asamura, Y.; Kubota, Y.; Funabiki, K.; Jin, J.;Yoshida, T.; Miura, H. Tetrahedron 2010, 66, 7405. doi: 10.1016/j.tet.2010.07.017

    11. [11]

      (11) Nishida, S.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui,T.; Nakasuji, K. Angew. Chem. Int. Edit. 2005, 44, 7277. doi: 10.1002/anie.200502180

    12. [12]

      (12) Olaya, A. J.; Ge, P.; nthier, J. F.; Pechy, P.; Corminboeuf, C.;Girault, H. H. J. Am. Chem. Soc. 2011, 133, 12115. doi: 10.1021/ja203251u

    13. [13]

      (13) Jia, C.; Liu, S. X.; Ambrus, C.; Neels, A.; Labat, G.; Decurtins,S. Inorg. Chem. 2006, 45, 3152. doi: 10.1021/ic060056f

    14. [14]

      (14) Jia, C.; Liu, S. X.; Tanner, C.; Leiggener, C.; Neels, A.;Sanguinet, L.; Levillain, E.; Leutwyler, S.; Hauser, A.;Decurtins, S. Chem. Eur. J. 2007, 13, 3804. doi: 10.1002/chem.200601561

    15. [15]

      (15) Jia, C. Y.; Zhang, D. Q.; Xu, Y.; Xu,W.; Zhu, D. Syn. Met. 2003,137, 979. doi: 10.1016/S0379-6779(02)00974-8

    16. [16]

      (16) Chen, Y.; Liu,W.; Jin, J. S.; Liu, B.; Zou, Z. G.; Zuo, J. L.; You,X. Z. J. Organomet. Chem. 2009, 694, 763. doi: 10.1016/j.jorganchem.2008.12.018

    17. [17]

      (17) McCall, K. L.; Morandeira, A.; Durrant, J.; Yellowlees, L. J.;Robertson, N. Dalton Tran. 2010, 39, 4138. doi: 10.1039/b924660f

    18. [18]

      (18) Wenger, S.; Bouit, P. A.; Chen, Q.; Teuscher, J.; Censo, D. D.;Humphry-Baker, R.; Moser, J. E.; Delgado, J. L.; Martín, N.;Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2010, 132,5164. doi: 10.1021/ja909291h

    19. [19]

      (19) Sanchez-de-Armas, R.; San Miguel, M. A.; Oviedo, J.; Sanz, J.F. Phys. Chem. Chem. Phys. 2012, 14, 225. doi: 10.1039/c1cp22058f

    20. [20]

      (20) De Angelis, F.; Fantacci, S.; Gebauer, R. J. Phys. Chem. Lett.2011, 2, 813. doi: 10.1021/jz200191u

    21. [21]

      (21) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2009, 25, 2087. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2009, 25, 2087.] doi: 10.3866/PKU.WHXB20090925

    22. [22]

      (22) Zhan,W. S.; Li, R.; Pan, S.; Guo, Y. N.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29, 255. [詹卫伸, 李睿, 潘石,郭英楠, 张毅. 物理化学学报, 2013, 29, 255.] doi: 10.3866/PKU.WHXB201211221

    23. [23]

      (23) Cao, Z. F.; Chen, Q. B.; Lu, Y. X.; Liu, H. L.; Hu, Y. Acta Phys. -Chim. Sin. 2012, 28, 1085. [曹振锋, 陈启斌, 卢运祥,刘洪来, 胡英. 物理化学学报, 2012, 28, 1085.] doi: 10.3866/PKU.WHXB201203024

    24. [24]

      (24) Zhang, J.; Li, H. B.; Sun, S. L.; Geng, Y.;Wu, Y.; Su, Z. M. J. Mater. Chem. 2012, 22, 568. doi: 10.1039/c1jm13028e

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    26. [26]

      (26) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015

    27. [27]

      (27) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452

    28. [28]

      (28) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304

    29. [29]

      (29) Sanchez-de-Armas, R.; San-Miguel, M. A.; Oviedo, J.;Marquez, A.; Sanz, J. F. Phys. Chem. Chem. Phys. 2011, 13,1506. doi: 10.1039/c0cp00906g

    30. [30]

      (30) Sanchez-de-Armas, R. O.; Oviedo Lopez, J.; San-Miguel, M.A.; Sanz, J. F.; Ordejón, P.; Pruneda, M. J. Chem. Theory Comput. 2010, 6, 2856. doi: 10.1021/ct100289t

    31. [31]

      (31) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393,51. doi: 10.1016/j.cplett.2004.06.011

    32. [32]

      (32) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. J. Phys. Chem. C 2010, 114, 7205. doi: 10.1021/jp100713r

    33. [33]

      (33) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105,2999. doi: 10.1021/cr9904009

    34. [34]

      (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865

    35. [35]

      (35) Delley, B. Phys. Rev. B 2002, 66, 155125. doi: 10.1103/PhysRevB.66.155125

    36. [36]

      (36) Xu, J.; Zhang, H.;Wang, L.; Liang, G.;Wang, L.; Shen, X.; Xu,W. Spectrochim. Acta A 2010, 76, 239. doi: 10.1016/j.saa.2010.03.027

    37. [37]

      (37) Asbury, J.;Wang, Y. Q.; Hao, E.; Ghosh, H.; Lian, T. Res. Chem. Intermediat. 2001, 27, 393. doi: 10.1163/156856701104202255

    38. [38]

      (38) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I.J. Phys. Chem. B 2000, 104, 2053. doi: 10.1021/jp993187t

    39. [39]

      (39) Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. J. Phys. Chem. B 2000, 104, 1300. doi: 10.1021/jp993583b

    40. [40]

      (40) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M.J. Phys. Chem. B 2003, 107, 8981. doi: 10.1021/jp022656f

    41. [41]

      (41) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan,N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P. J. Comput. Chem. 2011, 32, 1568. doi: 10.1002/jcc.21735

    42. [42]

      (42) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.;Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2002, 107, 597. doi: 10.1021/jp026963x

    43. [43]

      (43) Ye, S.; Kathiravan, A.; Hayashi, H.; Tong, Y.; Infahsaeng, Y.;Chabera, P.; Pascher, T.; Yartsev, A. P.; Isoda, S.; Imahori, H.;Sundström, V. J. Phys. Chem. C 2013, 117, 6066. doi: 10.1021/jp400336r

    44. [44]

      (44) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.;Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S.J. Comput. Chem. 2012, 33, 1517. doi: 10.1002/jcc.22983


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    9. [9]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    10. [10]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    12. [12]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    13. [13]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    14. [14]

      Qian ZHANGYuxuan ZHANGYongguang YANGRuijie BAIYuandong LILing LI . FeMoS4/carbon fiber cloth composites: Preparation and application in dye-sensitized solar cells. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1916-1926. doi: 10.11862/CJIC.20240442

    15. [15]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    18. [18]

      Kun JIANGYutong XUEKelin LIUMiao WANGTongming SUNYanfeng TANG . CeVO4 hollow microspheres: Fabrication and adsorption performance for dyes. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2229-2236. doi: 10.11862/CJIC.20250223

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

Metrics
  • PDF Downloads(747)
  • Abstract views(1541)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return