Citation: HU You-Kun, REN Jian-Xin, WEI Qiao-Ling, GUO Xiao-Dong, TANG Yan, ZHONG Ben-He, LIU Heng. Synthesis of Rod-Like LiFePO4/C Materials with Different Aspect Ratios by Polyol Process[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 75-82. doi: 10.3866/PKU.WHXB201311261
-
Rod-like LiFePO4/C particles with different aspect ratios were synthesized by controlling the reflux reaction time in polyol medium at a low temperature, using an Fe3+ salt as the iron source. The precursors and final LiFePO4/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge test. The results show that the reflux reaction time has a significant effect on the characteristics of the LiFePO4 precursors and electrochemical performance of the final LiFePO4/C samples. The morphology of the precursors is transformed from irregular short rod-like particles into regular long rod-like particles, and the aspect ratios of the rods increase with increasing reflux reaction time from 4 to 16 h. At a reflux reaction time of 10 h, the material contains multifarious morphologies, which is beneficial to the electron transmission, and displays an excellent electrochemical performance at low discharge rates, the discharge capacity is 163 mAh·g-1 at 0.1C rate. Extension of the reflux reaction time to 16 h, the material reveals the biggest aspect ratio, which is conducive to the diffusion of lithium ions, and gives od electrochemical performance at high discharge rates, the discharge capacities are measured to be 135, 125, 118, 110, and 98 mAh·g-1 at 1C, 3C, 5C, 10C, and 20C rates, respectively, revealing od cycling performance and little capacity fading.
-
-
[1]
(1) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97, 498.
-
[2]
(2) Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev.2004, 104, 4243. doi: 10.1021/cr020705e
-
[3]
(3) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
-
[4]
(4) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165,646. doi: 10.1016/j.jpowsour.2006.10.054
-
[5]
(5) Cheng, Y.;Wang, G.; Yan, M. M.; Jiang, Z. Y. J. Solid State Electrochem. 2007, 11, 310.
-
[6]
(6) Ferrari, S.; Lavall, R. L.; Capsoni, D.; Quartarone, E.; Magistris,A.; Mustarelli, P.; Canton, P. J. Phys. Chem. C 2010, 114,12598. doi: 10.1021/jp1025834
-
[7]
(7) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.
-
[8]
(8) Konarova, M.; Taniguchi, L. J. Power Sources 2010, 195,3661. doi: 10.1016/j.jpowsour.2009.11.147
-
[9]
(9) Yang, S. T.; Zhao, N. H.; Dong, H. Y.; Yang, J. X.; Hue, H. Y.Electrochim. Acta 2005, 51, 166. doi: 10.1016/j.electacta.2005.04.013
-
[10]
(10) Jinsub, L.; Mathew, V.; Kangkun, K.; Jieh, M.; Jaekook, K.J. Electrochem. Soc. 2011, 158, A736.
-
[11]
(11) Kim, D.; Lim, J.; Choi, E.; Gim, J.; Mathew, V.; Paik, Y.; Jung,H.; Lee,W.; Ahn, D.; Paek, S.; Kim, J. Surf. Rev. Lett. 2010, 17,111. doi: 10.1142/S0218625X10014053
-
[12]
(12) Deng, H. G.; Jin, S. L.; Zhan, L.; Qiao,W. M.; Ling, L. C.Electrochim. Acta 2012, 78, 633. doi: 10.1016/j.electacta.2012.06.059
-
[13]
(13) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Guo, H. J.; Zhou, S. Y.J. Power Sources 2008, 184, 574. doi: 10.1016/j.jpowsour.2008.01.016
-
[14]
(14) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28 (5), 1183. [曹雁冰, 段建国,姜峰, 胡国荣, 彭忠东, 杜柯. 物理化学学报, 2012, 28 (5),1183.] doi: 10.3866/PKU.WHXB201202221
-
[15]
(15) Franger, S.; Le, C. F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119, 252.
-
[16]
(16) Arnold, G.; Garche, J.; Hemmer, R.; Strobele, S.; Vogler, C.;Wohlfahrt-Mehrens, A. J. Power Sources 2003, 119, 247.
-
[17]
(17) Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc.2001, 148, A224.
-
[18]
(18) Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
-
[19]
(19) Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. J. Chem. Mater. 2007, 17, 45. doi: 10.1039/b613457m
-
[20]
(20) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347. [赵浩川,宋杨, 郭孝东, 钟本和, 董静, 刘恒. 物理化学学报,2011, 27 (10), 2347.] doi: 10.3866/PKU.WHXB20110905
-
[21]
(21) Murugan, A. V.; Muraliganth, T.; Manthiram, A. Electrochem. Commun. 2008, 10, 903. doi: 10.1016/j.elecom.2008.04.004
-
[22]
(22) ng, H. X.; Yu, Y.; Li, T.; Mei, T.; Xing, Z.; Zhu, Y. C.; Qian,Y. T.; Shen, X. Y. Mater. Lett. 2012, 66, 374. doi: 10.1016/j.matlet.2011.08.093
-
[23]
(23) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G.C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 28.
-
[24]
(24) Sun, C.W.; Rajasekhara, S.; odenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133, 2132. doi: 10.1021/ja1110464
-
[25]
(25) Wen, J. J. Study on the Lquid Phase Synthesis of Lithium IronPhosphate for Cathode Materials. MS Dissertation, SichuanUniversity, Chengdu, 2012. [文嘉杰. 液相法合成磷酸铁锂正极材料的研究[D]. 成都: 四川大学, 2012.]
-
[26]
(26) Wang, Y. G.;Wang, Y. R.; Hosono, E. J.;Wang, K. X.; Zhou, H.S. Angew. Chem. Int. Edit. 2008, 47, 7461. doi: 10.1002/anie.v47:39
-
[27]
(27) Lin, Y. B.; Lin, Y.; Zhou, T.; Zhou, T.; Zhao, G. Y.; Huang, Y.D.; Huang, Z. G. J. Power Sources 2013, 226, 20. doi: 10.1016/j.jpowsour.2012.10.074
-
[28]
(28) Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann,W.J. Power Sources 2011, 196, 6729. doi: 10.1016/j.jpowsour.2010.11.015
-
[29]
(29) Barsoukov, E.; Kim, J. H.; Yoon, C. O.; Lee, H. J. Electrochem. Soc. 1998, 145, 2711. doi: 10.1149/1.1838703
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[10]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[11]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[12]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[13]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[14]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[15]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[16]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[17]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[20]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[1]
Metrics
- PDF Downloads(714)
- Abstract views(891)
- HTML views(33)