Citation: XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 141-149. doi: 10.3866/PKU.WHXB201311211
-
A novel photocatalyst, C@CdS/halloysite nanotubes (HNTs), was synthesized using a facile and effective pyrolytic method. The as-prepared photocatalyst was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area measurements, and X-ray energy dispersive, ultraviolet-visible diffuse reflectance, Fourier-transform infrared, specific surface area, and Raman spectroscopies. The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible-light irradiation. The influence of different pyrolysis temperatures on the photocatalytic degradation of TC was investigated. The optimal pyrolysis temperature was found to be 400 ℃. The photodegradation rate reached 86% in 60 min under visible-light irradiation. In addition, benefiting from the common effects of carbon, CdS, and HNTs, the photocatalyst exhibited od chemical stability. After being laid aside for one year, the photocatalytic efficiency was unaffected and the photocatalyst retained its high catalytic activity after three catalytic cycles. Based on our experimental results, the preparation mechanism and degradation of the intermediate product of TC are discussed.
-
-
[1]
(1) Marshall, B. M.; Levy, S. B. Clin. Microbiol. Rev. October2011, 24, 718. doi: 10.1128/CMR.00002-11
-
[2]
(2) Baquero, F.; Martínez, J. L.; Canton, R. Curr. Opin. Biotechnol.2008, 19, 260. doi: 10.1016/j.copbio.2008.05.006
-
[3]
(3) Jiao, S. J.; Zheng, S. R.; Yin, D. Q.;Wang, L. H.; Chen, L. Y.Chemosphere 2008, 73, 377.
-
[4]
(4) Zhao, C.; Deng, H. P.; Li, Y.; Liu, Z. Z. J. Hazard. Mater. 2010,176, 884. doi: 10.1016/j.jhazmat.2009.11.119
-
[5]
(5) Pereira, J. H. O. S.; Vilar, V. J. P.; Borges, M. T.; nzález, O.;Esplugas, S.; Boaventura, R. A. R. Sol. Energy 2011, 85, 2732.doi: 10.1016/j.solener.2011.08.012
-
[6]
(6) Lin, X.; Yu, L. L.; Yan, L, N.; Guan, Q. F.; Yan, Y. S.; Zhao, H.Acta Phys. -Chim. Sin. 2013, 29, 1771. [林雪, 于丽丽, 闫丽娜, 关庆丰, 闫永胜, 赵晗. 物理化学学报, 2013, 29, 1771.]doi: 10.3866/PKU.WHXB201305131
-
[7]
(7) Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Appl. Surf. Sci.2008, 254, 7215. doi: 10.1016/j.apsusc.2008.05.268
-
[8]
(8) Shi, J.W.; Yan, X.; Cui, H. J.; Zong, X.; Fu, M. L.; Chen, S. H.;Wang, L. Z. J. Mol. Catal. A: Chem. 2012, 356, 53. doi: 10.1016/j.molcata.2012.01.001
-
[9]
(9) Barpuzary, D.; Khan, Z.; Vinothkumar, N.; De, M.; Qureshi, M.J. Phys. Chem. C 2012, 116, 150.
-
[10]
(10) Ryu, S. Y.; Balcerski,W.; Lee, T. K.; Hoffmann, M. R. J. Phys.Chem. C 2007, 111, 18195. doi: 10.1021/jp074860e
-
[11]
(11) Zhang, H.; Zhu, Y. F. J. Phys. Chem. C 2010, 114, 5822. doi: 10.1021/jp910930t
-
[12]
(12) Guo, Y.;Wang, H. S.; He, C. L. Langmuir 2009, 25, 4678. doi: 10.1021/la803530h
-
[13]
(13) Zhong, J.; Chen, F.; Zhan, J. L. J. Phys. Chem. C 2010, 114,933. doi: 10.1021/jp909835m
-
[14]
(14) Yang, H. P.; Zhang, Y. C.; Fu, X. F.; Song, S. S.;Wu, J. M. ActaPhys. -Chim. Sin. 2013, 29, 1327. [杨汉培, 张颖超, 傅小飞,宋双双, 吴俊明. 物理化学学报, 2013, 29, 1327.] doi: 10.3866/PKU.WHXB201303212
-
[15]
(15) Li, S. K.; Huang, F. Z.;Wang, Y.; Shen, Y. H.; Qiu, L. G.; Xie,A. J.; Xu, S. J. J. Mater. Chem. 2011, 21, 7459. doi: 10.1039/c0jm04569a
-
[16]
(16) Gao, Z. Y.; Liu, N.;Wu, D. P.; Tao,W. G.; Xu, F.; Jiang, K.Appl. Surf. Sci. 2012, 258, 2473. doi: 10.1016/j.apsusc.2011.10.075
-
[17]
(17) Papoulis, D.; Komarneni, S.; Nikolopoulou, A.; Tsolis-Katagas,P.; Panagiotaras, D., Kacandes, H. G.; Zhang, P.; Yin, S.; Satoe,T.; Katsuk, H. Appl. Clay Sci. 2010, 50, 118. doi: 10.1016/j.clay.2010.07.013
-
[18]
(18) Pan, J. M.; Yao, H.; Xu, L. C.; Ou, H. X.; Huo, P.W.; Li, X. X.;Yan, Y. S. J. Phys. Chem. C 2011, 115, 5440. doi: 10.1021/jp111120x
-
[19]
(19) Wang, L.; Chen, J. L.; Ge, L.; Zhu, Z. H.; Rudolph, V. EnergyFuels 2011, 25, 3408. doi: 10.1021/ef200719v
-
[20]
(20) Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cin lani,R.; Rinaldi, R.; Leporatti, S. Biomacromolecules 2010, 11,820. doi: 10.1021/bm9014446
-
[21]
(21) Reshmi, R.; Sanjay, G.; Sugunan, S. Catal. Commun. 2006, 7,460. doi: 10.1016/j.catcom.2006.01.001
-
[22]
(22) Zhao, M. F.; Liu, P. Microporous Mesoporous Mat. 2008, 112,419. doi: 10.1016/j.micromeso.2007.10.018
-
[23]
(23) Zhang, K. J.; Liu, X. H. J. Solid State Chem. 2011, 184, 2701.doi: 10.1016/j.jssc.2011.08.011
-
[24]
(24) Wang, Q. Q.; Zhao, G. L.; Han, G. R. Mater. Lett. 2005, 59,2625. doi: 10.1016/j.matlet.2005.04.004
-
[25]
(25) Wang, R. J.; Jiang, G. H.; Ding, Y.W.;Wang, Y.; Sun, X. K.;Wang, X. H.; Chen,W. X. Appl. Mater. Interfaces 2011, 3,4154. doi: 10.1021/am201020q
-
[26]
(26) Bhattacharyya, S. Y.; Zitoun, D.; Gedanken, A. J. Phys. Chem.C 2008, 112, 7624. doi: 10.1021/jp801353w
-
[27]
(27) Bhattacharyya, S. Y.; Estrin, Y.; Rich, D. H.; Zitoun, D.;Gedanken, A. J. Phys. Chem. C 2010, 114, 22002. doi: 10.1021/jp107083f
-
[28]
(28) Mahendirana, C.; Maiyalaganb, T.; Scottb, K.; Gedanken, A.Mater. Chem. Phys. 2011, 128, 341. doi: 10.1016/j.matchemphys.2011.02.067
-
[29]
(29) Yang, H.; An, T. C.; Li, G. Y.; Song,W. H.; Cooper,W. J.; Luo,H. Y.; Guo, X. D. J. Hazard. Mater. 2010, 179, 834. doi: 10.1016/j.jhazmat.2010.03.079
-
[30]
(30) Wu, J.; Zhang, H.; Oturan, N.;Wang, Y.; Chen, L.; Oturan, M.A. Chemosphere 2012, 87, 614. doi: 10.1016/j.chemosphere.2012.01.036
-
[31]
(31) Lu, Z. Y.; Huo, P.W.; Luo, Y. Y.; Liu, X. L.;Wu, D.; Gao, X.;Li, C. X.; Yan, Y. S. J. Mol. Catal. A: Chem. 2013, 378, 91.doi: 10.1016/j.molcata.2013.06.001
-
[1]
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[3]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[4]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[5]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[6]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[7]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[8]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
-
[11]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[12]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[13]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[14]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[15]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[16]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[17]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[18]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[19]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(559)
- Abstract views(1115)
- HTML views(41)