Citation: WANG Xiu-Ping, ZHOU De-Feng, YANG Guo-Cheng, SUN Shi-Cheng, LI Zhao-Hui. Structure and Electrical Properties of Ce0.8Nd0.2O1.9-La0.95Sr0.05Ga0.9Mg0.1O3-δ Solid Composite Electrolytes[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 95-101. doi: 10.3866/PKU.WHXB201311141
-
Ce0.8Nd0.2O1.9 (NDC) and La0.95Sr0.05Ga0.9Mg0.1O3-δ (LSGM) electrolytes were each prepared using a sol-gel method. NDC-LSGM composite electrolytes were then prepared by adding 0-15% (w, mass fraction) precalcined LSGM powders to NDC sols. The microstructure and phase composition of the pellets were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and energydispersive X-ray spectroscopy (EDS). The electrical conductivities of the pellets were measured using alternative current (AC) impedance spectroscopy. The results showed that all the composites were composed of the cubic fluorite structure, perovskite structure, and secondary phases. The LSGM additive significantly promoted grain growth. The grain boundary conduction increased greatly as a result of the presence of phase interfaces and mitigation of the harmful effects of SiO2 impurities. NL10 was found to have the highest conductivities (σgb=12.15×10-4 S·cm-1, σt=3.49×10-4 S·cm-1 at 400 ℃); these values are 7.62 and 1.91 times higher than those of NDC (σgb=1.41×10-4 S·cm-1, σt=1.2×10-4 S·cm-1). The enhancement of the total conductivity of NL10 is mainly attributed to the large increase in grain boundary conductivity.
-
-
[1]
(1) M-Hernandez, A.; V-Castillo, J.; Mogni, L.; Caneiro, A. Int. J. Hydrog. Energy 2011, 36 (24), 15704.
-
[2]
(2) Hart, N. T.; Brandon, N. P.; Day, M. J.; Lapeña-Rey, N.J. Power Sources 2002, 106 (1-2), 42. doi: 10.1016/S0378-7753(01)01035-7
-
[3]
(3) Steele, B. C. H. Solid State Ionics 2000, 129 (1-4), 95. doi: 10.1016/S0167-2738(99)00319-7
-
[4]
(4) Yan, D. Y.; Liu, X. M.; Bai, X. Y.; Pei, L.; Zheng, M. Z.; Zhu, C.J.; Su,W. H. J. Power Sources 2010, 195, 6488.
-
[5]
(5) Molenda, J.; wierczek, K.; Zaj c,W. J. Power Sources 2007,173 (2), 660.
-
[6]
(6) Badwal, S. P. S.; Ciacchi, F. T.; Drennan, J. Solid State Ionics1999, 121 (1-4), 253. doi: 10.1016/S0167-2738(99)00044-2
-
[7]
(7) Abrantes, J. C. C.; Pérez-Coll, D.; Núñez, P.; Frade, J. R.Electrochim. Acta 2003, 48 (19), 2761. doi: 10.1016/S0013-4686(03)00395-5
-
[8]
(8) Xia, Y. J.; Bai, Y. J.;Wu, X. J.; Zhou, D. F.; Liu, X. J.; Meng, J.Int. J. Hydrog. Energy 2011, 36, 6840. doi: 10.1016/j.ijhydene.2011.02.118
-
[9]
(9) Zhao, Y. C.; Xu, Z. R.; Xia, C.; Li, Y. D. Int. J. Hydrog. Energy2013, 38, 1553. doi: 10.1016/j.ijhydene.2012.11.004
-
[10]
(10) Fan, L. D.;Wang, C. Y.; Chen, M. M.; Zhu, B. J. Power Sources2013, 234, 154. doi: 10.1016/j.jpowsour.2013.01.138
-
[11]
(11) Kwon, T. H.; Lee, T.; Yoo, H. I. Solid State Ionics 2011, 195 (1),25. doi: 10.1016/j.ssi.2011.05.002
-
[12]
(12) Cho, S.; Kim, Y. N.; Kim, J. H.; Manthiram, A.;Wang, H. Y.Electrochim. Acta 2011, 56 (16), 5472. doi: 10.1016/j.electacta.2011.03.039
-
[13]
(13) Jang,W. S.; Hyun, S. H.; Kim, S. G. J. Mater. Sci. 2002, 37 (12), 2535. doi: 10.1023/A:1015451910081
-
[14]
(14) Inoue, T.; Setoguchi, T.; Eguchi, K.; Arai, H. Solid State Ionics1989, 35 (3-4), 285. doi: 10.1016/0167-2738(89)90310-X
-
[15]
(15) Ishihara, T.; Matsuda, H.; Takita, Y. J. Am. Chem. Soc. 1994,116, 3801. doi: 10.1021/ja00088a016
-
[16]
(16) Huang, K.; Tichy, R. S.; odenough, J. B. J. Am. Ceram. Soc.1998, 81, 2565. doi: 10.1111/j.1151-2916.1998.tb02662.x
-
[17]
(17) Kharton, V. V.; Marques, F. M. B.; Atkinson, A. Solid State Ionics 2004, 174 (1-4), 135. doi: 10.1016/j.ssi.2004.06.015
-
[18]
(18) Zhang, X. G.; Ohara, S.; Okawa, H.; Maric, R.; Fukui, T. Solid State Ionics 2001, 139 (1-2), 145. doi: 10.1016/S0167-2738(00)00833-X
-
[19]
(19) Xu, D.; Liu, X. M.; Zhu, C. J.;Wang, D. J.; Yan, D. T.;Wang,D. Y.; Su,W. H. J. Rare Earth 2008, 26, 241. doi: 10.1016/S1002-0721(08)60073-3
-
[20]
(20) Xu, D.; Liu, X. M.;Wang, D. J.; Yi, G. Y.; Gao, Y.; Zhang, D.S.; Su,W. H. J. Alloy. Compd. 2007, 429, 292. doi: 10.1016/j.jallcom.2006.04.009
-
[21]
(21) Jo, S. H.; Muralidharan, P.; Kim, D. K. J. Alloy. Compd. 2010,491, 416. doi: 10.1016/j.jallcom.2009.10.207
-
[22]
(22) Hao, G. Y.; Liu, X. M.;Wang, H. P.; Be, H. L.; Pei, L.; Su,W.H. Solid State Ionics 2012, 225, 81. doi: 10.1016/j.ssi.2012.03.005
-
[23]
(23) Medvedev, D.; Mara u, V.; Pikalova, E.; Demin, A.; Tsiakaras,P. J. Power Sources 2013, 221, 217. doi: 10.1016/j.jpowsour.2012.07.120
-
[24]
(24) Xu, D.; Liu, X. M.;Wang, D. J.; Zhu, C. J.; Yan, D. T.; Pei, L.;Su,W. H. Chem. J. Chin. Univ. 2008, 29, 1523. [徐丹, 刘晓梅, 王德军, 朱成军, 严端廷, 裴力, 苏文辉. 高等学校化学学报, 2008, 29, 1523.]
-
[25]
(25) Zhang, T. S.; Hing, P.; Huang, H. T.; Kilner, J. J. Eur. Ceram. Soc. 2002, 22, 27. doi: 10.1016/S0955-2219(01)00240-0
-
[26]
(26) Li, J. G.; Ikegami, T.; Mori, T. Acta Materialia 2004, 52 (8),2221. doi: 10.1016/j.actamat.2004.01.014
-
[27]
(27) Pikalova, E. Yu. Murashkina, A. A.; Mara u, V. I.; Demin, A.K.; Strekalovsky, V. N.; Tsiakaras, P. E. Int. J. Hydrog. Energy2011, 36 (10), 6175. doi: 10.1016/j.ijhydene.2011.01.132
-
[28]
(28) Kahlauoi, M.; Inoubli, A.; Chefi, S.; Kouki, A.; Madani, A.;Chefi, C. Ceram. Int. 2013, 39 (6), 6175. doi: 10.1016/j.ceramint.2013.01.036
-
[29]
(29) Zhou, D. F.; Zhu, J. X.; Xia, Y. J.; Zhao, G. C.; Meng, J. Chin. J. Inorg. Chem. 2010, 26 (1), 91. [周德凤, 朱建新, 夏燕杰, 赵桂春, 孟健. 无机化学学报, 2010, 26 (1), 91.]
-
[30]
(30) Guo, X.;Waser, R. Prog. Mater. Sci. 2006, 51 (2), 151. doi: 10.1016/j.pmatsci.2005.07.001
-
[31]
(31) Wang, X. D.; Mab, Y.; Raza, R.; Muhammed, M.; Zhu, B.Electrochem. Commun. 2008, 10, 1617. doi: 10.1016/j.elecom.2008.08.023
-
[32]
(32) Zhang, Z.; Zhang, H.; Liu, C. F.; Liu, Y. L.; Li, Z. C. Materials Science and Engineering of Powder Metalluray 2011, 16 (5),682. [张哲, 张鸿, 刘超峰, 刘玉龙, 李志成. 粉末冶金材料科学与工程, 2011, 16 (5), 682.]
-
[33]
(33) Guo, X.; Sigle,W.; Maier, J. J. Am. Ceram. Soc. 2003, 86, 77.doi: 10.1111/jace.2003.86.issue-1
-
[34]
(34) Zhang, T. S.; Ma, J.; Chan, S. H.; Kilner, J. A. Solid State Ionics2005, 176 (3-4), 377. doi: 10.1016/j.ssi.2004.07.022
-
[35]
(35) Schouler, E.; Giroud, G.; Kleitz, M. J. Chem. Phys. 1973, 70,1309.
-
[36]
(36) Rahmawati, F.; Prijamboedi, B.; Soepriyanto, S.; Ismunandar.Int. J. Min. Met. Mater. 2012, 19 (9), 863. doi: 10.1007/s12613-012-0640-0
-
[37]
(37) Cho, Y. H.; Cho, P. S.; Auchterlonie, G.; Kim, D. K.; Lee, J. H.;Kim, D. Y.; Park, H. M.; Drennan, J. Acta Materialia 2007, 55 (14), 4807. doi: 10.1016/j.actamat.2007.05.001
-
[38]
(38) Kim, D. K.; Cho, P. S.; Lee, J. H.; Kim, D. Y.; Park, H. M.;Auchterlonie, G.; Drennan, J. Electrochem. Solid State Lett.2007, 10 (5), 91. doi: 10.1149/1.2710959
-
[1]
-
-
[1]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[7]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[10]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[11]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[12]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[13]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[14]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[15]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[16]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[17]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[18]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[19]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[20]
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
-
[1]
Metrics
- PDF Downloads(453)
- Abstract views(774)
- HTML views(13)