Citation: WANG Xiao-Xuan, HU Wei, GUI Da-Yong, CHI Xu-Hui, WANG Ming-Liang, TIAN De-Yu, LIU Jian-Hong, MA Xin-Gang, PANG Ai-Min. Proton Transfer in Reaction between 2,4-Diisocyanatotoluene and Amine Compounds[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 34-42. doi: 10.3866/PKU.WHXB201311121 shu

Proton Transfer in Reaction between 2,4-Diisocyanatotoluene and Amine Compounds

  • Received Date: 15 July 2013
    Available Online: 12 November 2013

    Fund Project: 国防973 (613142),国家自然科学基金(20673073),深圳市功能高分子重点实验室开放基金(FP20130007)资助项目 (613142),国家自然科学基金(20673073),深圳市功能高分子重点实验室开放基金(FP20130007)

  • The effects of proton transfer on the reaction between 2,4-diisocyanatotoluene (2,4-TDI) and active-hydrogen-containing amine compounds were calculated using density functional theory (DFT) at the B3LYP/6-31+G(d, p) level. The energy barriers are significantly reduced when a methanol molecule serves as a proton transporter or a reactive catalyst, indicating that the labile hydrogen-containing compound plays a key role in accelerating the reaction rate and proton transfer. The catalytic addition of 2,4-TDI and methyl N-methylcarbamate follows a one-step mechanism, with a transition state characterized by a sixmembered ring. However, the catalytic additions of 2,4-TDI and aromatic amines such as N-methyl-p-nitroaniline, diphenylamine, and 1,2-dihydro-2,2,4-trimethylquinoline involve two steps, with the first step as the rate-limiting step. The reactions between 2,4-TDI and aromatic amines have lower energy barriers than that between 2,4-TDI and methyl N-methylcarbamate. The aromatic amines are more active than methyl N-methylcarbamate in the reaction with 2,4-TDI, which is in a od agreement with experimental results.

  • 加载中
    1. [1]

      (1) Silva, A. L.; Bordado, J. C. Catal. Rev.: Sci. Eng. 2004, 46, 31.doi: 10.1081/CR-120027049

    2. [2]

      (2) Kimock, M. J.; Listemann, M. L. N,N,N'-trimethylbis (Aminoethyl) Ether Substituted Urea Compostions for theProduction of Polyurethanes. U.S. Patent 5824711, 1998.

    3. [3]

      (3) Mercando, L. A.; Listemann, M. L.; Kimock, M. J. ReactiveCatalyst Compositions for ImprovingWater BlownPolyurethane Foam Performance. U.S. Patent 6232356, 2001.

    4. [4]

      (4) Chen, N.; Listemann, M. L.; Underwood, R. P. AmidoFunctional Amine Catalysts for the Production of Polyurethanes.U.S. Patent 6156814, 2000.

    5. [5]

      (5) Gerkin, R. M.; Robinson, K. K. Reactive Amine Catalysts forUse in Polyurethane Polymers. U.S. Patent 6077877, 2000.

    6. [6]

      (6) Savoca, A. C. L.; Underwood, R. P.; Emerick, J. S.; Listemann,M. L. Aminopropylbis (Aminoethyl) Ether Compositions for theProduction of Polyurethanes. U.S. Patent 5874483, 1999.

    7. [7]

      (7) Listemann, M. L.; Minnich, K. E.; Farrell, B. E.; Mercando, L.A.; Kimock, M. J.; Nichols, J. D. Hydroxymethyl QuinuclidineCatalyst Compositions for Making Polyurethane Foams. U.S.Patent 5710191, 1998.

    8. [8]

      (8) Listemann, M. L.; Savoca, A. C. Hydroxy-Functional TriamineCatalyst Compositions for Polyurethane Production. U.S. Patent5633293, 1997.

    9. [9]

      (9) Tamano, Y.; Ishida, M.; Okuzono, S. Amine Catalyst forProducing Polyurethane and Process for ProducingPolyurethane. U.S. Patent 5374666, 1994.

    10. [10]

      (10) Demassa, J. M. Polyurethane Foam Scorch Inhibitor. U.S.Patent 0230579, 2011.

    11. [11]

      (11) Hatanaka, M. Bull. Chem. Soc. Jpn. 2011, 84, 933. doi: 10.1246/bcsj.20110144

    12. [12]

      (12) Ephraim, S.;Woodward, A. E.; Mesrobian, R. B. J. Am. Chem. Soc. 1958, 80, 1326. doi: 10.1021/ja01539a012

    13. [13]

      (13) Arnold, R. G.; Nelson, J. A.; Verbanc, J. J. Chem. Rev. 1957, 57,47. doi: 10.1021/cr50013a002

    14. [14]

      (14) Wang, X. X.; Hu,W.; Gui, D. Y.; Chi, X. H.;Wang, M. L.; Tian,D. Y.; Liu, J. H.; Ma, X. G.; Pang, A. M. Bull. Chem. Soc. Jpn.2013, 86, 255.

    15. [15]

      (15) Gnanarajan, T. P.; Iyer, N. P.; Nasar, A. S.; Radhakrishnan, G.Polym. Int. 2002, 51, 195.

    16. [16]

      (16) Pierce, E. M. Smokeless Propellant Compositions HavingPolyester or Polybutadiene Binder System Crosslinked withNitrocellulose. U.S. Patent 4216039, 1980.

    17. [17]

      (17) Preston, F. J.; Nakos, S. T.; Rua, L., Jr. Bis (Dimethylbenzyl)Diphenylamine Scorch Inhibitor for Polyurethane FoamsContaining Halogenated Phosphate Esters. U.S. Patent4235975, 1980.

    18. [18]

      (18) Coran, A. Y.; Patel, R.;Williams, D. Compositions of UrethaneRubber and Nylon. U.S. Patent 4419499, 1983.

    19. [19]

      (19) Katoh, K.; Yano, T.; Yasue, T.; Ito, M.; Shimizu, T. PolyurethaneFoam for Sealant. U.S. Patent 5990186, 1999.

    20. [20]

      (20) Sivakamasundari, S.; Ganesan, R. J. Org. Chem. 1984, 49, 720.doi: 10.1021/jo00178a035

    21. [21]

      (21) Borkent, G. Advances in Urethane Science and Technology;Technomic: Lancaster, 1974.

    22. [22]

      (22) Samuilov, A. Y.; Zenitova, L. A.; Samuilov, Y. D.; Konovalov,A. I. Russ. J. Org. Chem. 2008, 44, 1316. doi: 10.1134/S107042800809011X

    23. [23]

      (23) Samuilov, A. Y.; Zenitova, L. A.; Samuilov, Y. D.; Konovalov,A. I. Russ. J. Org. Chem. 2009, 45, 68. doi: 10.1134/S1070428009010096

    24. [24]

      (24) Samuilov, A. Y.; Balabanova, F. B.; Kamalov, T. A.; Samuilov,Y. D.; Konovalov, A. I. Russ. J. Org. Chem. 2010, 46, 1452.

    25. [25]

      (25) Raspoet, G.; Nguyen, M. T.; McGarraghy, M.; Hegarty, A. F.J. Org. Chem. 1998, 63, 6878. doi: 10.1021/jo9806411

    26. [26]

      (26) Cysewski, P.; Król, P.; Shyichuk, A. Macromol. Theory Simul.2007, 16, 541.

    27. [27]

      (27) Çoban, M.; Konuklar, F. A. S. Comput. Theor. Chem. 2011, 963,168. doi: 10.1016/j.comptc.2010.10.017

    28. [28]

      (28) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    29. [29]

      (29) Parr, R. G.; Yang,W. T. Density-Functional Theory of Atoms and Molecules; Oxford University Press: USA, 1994.

    30. [30]

      (30) Li, G. Y.; Li, Y. H.; Zhang, H.; Cui, G. H. Commun. Comput. Chem. 2013, 1, 88.

    31. [31]

      (31) Fan,W. J.; Deng,W. Q. Commun. Comput. Chem. 2013, 1, 152.

    32. [32]

      (32) Chen, M.; Yang, H. P.; Lin, X. X.; Chen, Y. T.;Wang, M. L.;Liu, J. H. Commun. Comput. Chem. 2013, 1, 72.

    33. [33]

      (33) Liu, Y. H.; Lan, S. C. Commun. Comput. Chem. 2013, 1, 1.

    34. [34]

      (34) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision C.01; Gaussian Inc.:Wallingford, CT, 2009.

    35. [35]

      (35) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.1989, 157, 200. doi: 10.1016/0009-2614(89)87234-3

    36. [36]

      (36) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem.1996, 100, 12771. doi: 10.1021/jp953748q

    37. [37]

      (37) Truhlar, D. G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 35,159. doi: 10.1146/annurev.pc.35.100184.001111

    38. [38]

      (38) Laidler, K. J.; King, M. C. J. Phys. Chem. 1983, 87, 2657. doi: 10.1021/j100238a002

    39. [39]

      (39) Bartlett, R. J. Theory and Applications of Computational Chemistry: The First Forty Years; Elsevier: Amsterdam, 2005.

    40. [40]

      (40) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.;Weinhold, F.NBO Version 3.1.

    41. [41]

      (41) Wang, H. B.; Deng, J. R.; Che, L.; Lei, B.; Shan, T. T. J. Propul. Technol. 2008, 29, 764.

    42. [42]

      (42) Xu,W.; Deng, J. R.; Zhang, L. J. Solid Rocket Technol. 2010,33, 560.

    43. [43]

      (43) Liu, Y. J. Polyurethane Resin and Its Application, 2nd ed.;Chemical Industry Press: Beijing, 2012.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    6. [6]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(683)
  • Abstract views(1110)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return