Citation: WU Ren-Zhen, FANG Zhen-Xing, LIU Ping, CAO Quan-Zhen, QIU Mei, LI Yi, CHEN Wen-Kai, HUANG Xin, ZHANG Yong-Fan. Electronic Structures and Optical Properties of Organic DAST and DSTMS Crystal Materials[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2534-2542. doi: 10.3866/PKU.WHXB201310292 shu

Electronic Structures and Optical Properties of Organic DAST and DSTMS Crystal Materials

  • Received Date: 9 July 2013
    Available Online: 29 October 2013

    Fund Project: 国家自然科学基金(90922022, 21373048) (90922022, 21373048) 中国工程物理研究院高能激光科学与技术重点实验室开放基金(2012HCF05) (2012HCF05) 福建省自然科学基金(2013J06004) (2013J06004)福州大学科技发展基金(2012-XQ-11)资助项目 (2012-XQ-11)

  • The electronic structures and optical properties of 4-N,N-dimethylamino-4'-N'-methylstilbazolium tosylate (DAST) and 4-N,N-dimethylamino-4'-N'-methylstilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) were investigated using density functional theory based on the plane wave basis set. The results indicated that the two compounds showed similar band structures, and the top of the valence band and the bottom of the conductive band mainly originated from the N 2p states of dimethylamino and methylpyridine, respectively. In terms of the linear optical properties, the birefringence indexes, Δn, of the two compounds were very large (Δn>0.5), and they exhibited od light transmission in the mid-and far-infrared regions. With regard to second-order nonlinear optical characteristics, the DAST and DSTMS crystals showed strong second harmonic generation (SHG) responses, and the corresponding SHG coefficients (d11) were about 150 pm·V-1. Analysis of the band structures showed that the SHG responses of the two compounds were closely related to charge transfers between electron-donating and electron-withdrawing groups. Ethylene bridging also played an important role in the charge transfer process.

  • 加载中
    1. [1]

      (1) Hochberg, M.; Baehr-Jones, T.;Wang, G. X.; Shearn, M.;Harvard, K.; Luo, J. D.; Chen, B. Q.; Shi, Z.W.; Lawson, R.;Sullivan, P.; Jen, A. K. Y.; Dalton, L.; Scherer, A. Nat. Mater.2006, 5, 703. doi: 10.1038/nmat1719

    2. [2]

      (2) Cheng, Y. J.; Luo, J. D.; Hau, S.; Bale, D. H.; Kim, T. D.; Shi, Z.W.; Lao, D. B.; Tucker, N. M.; Tian, Y. Q.; Dalton, L. R.; Reid,P. J.; Jen, A. K. Y. Chem. Mater. 2007, 19, 1154. doi: 10.1021/cm062340a

    3. [3]

      (3) Kim, T. D.; Kang, J.W.; Luo, J. D.; Jang, S. H.; Ka, J.W.;Tucker, N.; Benedict, J. B.; Dalton, L. R.; Gray, T.; Overney, R.M.; Park, D. H.; Herman,W. N.; Jen, A. K. Y. J. Am. Chem. Soc.2007, 129, 488. doi: 10.1021/ja067970s

    4. [4]

      (4) Haja, H. A. S.; Yu,W. C.; Chen, Z. B.; Tai, C. Y.; Lan, C.W. J . Crystal Growth 2005, 282, 117. doi: 10.1016/j.jcrysgro.2005.04.107

    5. [5]

      (5) Meier, U.; Bösch, M.; Bosshard, C.; Pan, F.; Günter, P. J. Appl. Phys. 1998, 83, 3486. doi: 10.1063/1.366560

    6. [6]

      (6) Yang, Z.; Mutter, L.; Ruiz, B.; Aravazhi, S.; Stillhart, M.;Jazbinsek, M.; Gramlich, V.; Günter, P. Adv. Funct. Mater. 2007,17, 2018.

    7. [7]

      (7) Figi, H.; Mutter, L.; Hunziker, C.; Jazbinaek, M.; Günter, P.;Coe, B. J. J. Opt. Soc. Am. B 2008, 25, 1786 . doi: 10.1364/JOSAB.25.001786

    8. [8]

      (8) Taniuchi, T.; Okada, S.; Nakanishi, H. Electronics Lett. 2004,40, 60. doi: 10.1049/el:20040036

    9. [9]

      (9) Yin, J.; Li, L.; Yang, Z.; Jazbinsek, M.; Tao, X.; Günter, P.;Yang, H. Dyes Pigments 2012, 94, 120. doi: 10.1016/j.dyepig.2011.12.004

    10. [10]

      (10) Yang, Z.; Jazbinsek, M.; Ruiz, B.; Aravazhi, S.; Gramlich, V.;Günter, P. Chem. Mater. 2007, 19, 3512. doi: 10.1021/cm070764e

    11. [11]

      (11) Li, Y.; Zhang, J.; Zhang, G.;Wu, L.; Fu, P.;Wu, Y. J. Crystal Growth 2011, 327, 127. doi: 10.1016/j.jcrysgro.2011.05.005

    12. [12]

      (12) Saito, S.; Inerbaev, T. M.; Mizuseki, H.; Igarashi, N.; Kawazoe,Y. Chem. Phys. Lett. 2006, 432, 157. doi: 10.1016/j.cplett.2006.10.089

    13. [13]

      (13) Vijayakumar, T.; Hubert Joe, I.; Reghunadhan Nair, C. P.;Jazbinsek, M.; Jayakumar, V. S. J. Raman Spectroscopy 2009,40, 52. doi: 10.1002/jrs.v40:1

    14. [14]

      (14) Hafner, J. J. Comput. Chem. 2008, 29, 2044. doi: 10.1002/jcc.v29:13

    15. [15]

      (15) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 38.

    16. [16]

      (16) Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/

    17. [17]

      (17) Kresse, G.; Furthmuller. J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    18. [18]

      (18) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    19. [19]

      (19) Rashkeev, S. N.; Lambrecht,W. R. L.; Segall, B. Phys. Rev. B1998, 57, 3905.

    20. [20]

      (20) Ni, B. L.; Zhou, H. G.; Jiang, J. Q.; Li, Y.; Zhang, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3502. [倪碧莲, 周和根, 姜俊全,李奕, 章永凡. 物理化学学报, 2010, 26, 3052.] doi: 10.3866/PKU.WHXB20101115

    21. [21]

      (21) Zhou, H. G.; Chen, H.; Chen, D.; Li, Y.; Ding, K. N.; Huang,X.; Zhang, Y. F. Acta Phys. -Chim. Sin. 2011, 27, 2805. [周和根, 陈虹, 陈懂, 李奕, 丁开宁, 黄昕, 章永凡. 物理化学学报, 2011, 27, 2805.] doi: 10.3866/PKU.WHXB20112805

    22. [22]

      (22) Huang, Y. Z.;Wu, L. M.;Wu, X. T.; Li, L. H.; Chen, L.; Zhang,Y. F. J. Am. Chem. Soc. 2010, 132, 12788. doi: 10.1021/ja106066k

    23. [23]

      (23) Zhao, H. J.; Zhang, Y. F.; Chen, L. J. Am. Chem. Soc. 2012, 134,1993. doi: 10.1021/ja2109008

    24. [24]

      (24) Chen, D.; Xiao, H. Y.; Jia,W.; Chen, H.; Zhou, H. G.; Li, Y.;Ding, K. N.; Zhang, Y. F. Acta Phys. Sin. 2012, 61, 127103.[陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 物理学报, 2012, 61, 127103.]

    25. [25]

      (25) Reshak,A. H.; Kamarudin, H.;Auluck S. J. Phys. Chem. B 2012,116, 4677. doi: 10.1021/jp3003036

    26. [26]

      (26) Luo, S. J.; Yang, J. T.; Du,W. F.; Laref, A. J. Phys. Chem. A2011, 115, 5192. doi: 10.1021/jp200164s

    27. [27]

      (27) Bauerle, D.; Betzler, K.; Hesse, H.; Kapphan, S.; Loose, P. Phys. Status Solidi A 1977, 42, 119.

    28. [28]

      (28) Levine, Z. H.; Allan, D. C. Phys. Rev. B 1993, 48, 7783. doi: 10.1103/PhysRevB.48.7783

    29. [29]

      (29) Lin, Z. S.;Wang, Z. Z.; Chen, C. T. J. Chem. Phys. 2003, 118,2349. doi: 10.1063/1.1533734

    30. [30]

      (30) Zyss, J.; Berthier, G. J. Chem. Phys. 1982, 77, 3635. doi: 10.1063/1.444266

    31. [31]

      (31) dby, R.W.; Schluter, M.; Sham, L. J. Phys. Rev. B 1988, 37,10159. doi: 10.1103/PhysRevB.37.10159

    32. [32]

      (32) Xiao, C. Synthsis and Characterization of Organic NonlinearOptical material of Novel Pyridinium Salts. Ph. D. Dissertation,Harbin University of Science and Technology, Harbin, 2009.[肖翠. 新型吡啶盐类有机非线性光学材料的合成和表征[D]. 哈尔滨: 哈尔滨理工大学, 2009.]

    33. [33]

      (33) Zheng, Z. Y.; Zhao, J. J. Acta Phys. -Chim. Sin. 2012, 28, 1809.[郑朝阳, 赵纪军. 物理化学学报, 2012, 28, 1809.] doi: 10.3866/PKU.WHXB201205242

    34. [34]

      (34) Hann, R. A.; Bloor, D. Organic Materials for Non-linear Optics II; Royal Society of Chemistry: Great Britain, 1991, pp 108-114.

    35. [35]

      (35) Mutter, L. Nonlinear Optical Organic Crystals for PhotonicApplications. Ph. D. Dissertation, ETH Zurich, Switzerland,2007.

    36. [36]

      (36) Knöpfle, G.; Schlesser, R.; Ducret, R.; Günter, P. Nonlinear Opt.1995, 9, 143.

    37. [37]

      (37) Mutter, L.; Brunner, F. D. J.; Yang, Z.; Jazbinsek, M.; Günter, P.J. Opt. Soc. Am. B 2007, 24, 2556. doi: 10.1364/JOSAB.24.002556


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(917)
  • Abstract views(992)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return